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Abstract: The problem of an optimal PP/TP (path/trajectory planning) evasion of a mobile
vehicle from the detection is considered. The objective is to minimize the risk of a moving
vehicle being detected by a static sensor when moving between two specified points on the plane.
Detection is based on the primary acoustic field emitted by a vehicle with an inhomogeneous
radiation pattern. An algorithm for finding a two-link optimal trajectory is proposed. The optimal
trajectory and the law of speed of a mobile vehicle, as well as the value of the criterion, are found.
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1. INTRODUCTION

The problems of path/trajectory planning of autonomous and controlled vehicles are currently
interesting due to their wide usage. For example, in the evasion problem, the moving object
must remain hidden for the detector system [1]. These problems are extremely relevant
for modern military applications. Technological advances allow the onboard algorithms of
unmanned mobile vehicles to be non-trivial and use solutions from broad scientific fields,
such as optimal control and differential games.

The problem of evading radar detection, in particular, is considered in [2] as a problem
of automated planning of the trajectory of combat unmanned aerial vehicles (UAVs) in the
presence of radar-guided surface-to-air missiles. It turns out that the solution of the problem
significantly depends on the assumption of the isotropic capabilities of the radar (i.e., the
independence of the reflected signal from the spatial orientation of the UAV). In case of
isotropic characteristics, an analytical solution for the problem is possible, which facilitates
the construction of an onboard control algorithm. Homogeneous radiation capabilities of
mobile vehicle are explored in papers [3-8].

The paper considers the problem of the covert infiltration of an unmanned underwater
vehicle (UUV) into a given area under the supervision of a stationary passive sonar
conducting a search on the primary hydro-acoustic field as in [9]. In contrast to previous
works dealing with path planning problems, the acoustic signal emitted by a mobile vehicle
has a non-uniform pattern. The task of the UUV optimal route planning from the starting
point of space to the end point can be formulated as a problem of calculus of variations.
The optimization criterion in this problem is the UUV non-detection probability, e.g. the
chance of the sonar to make a decision about UUV presence in the region under study during
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UUV’s passing along the route. The decision rule in threshold statistics is examined to make
the detection decision [10]. Let the UUV trajectory be represented by a piecewise linear
trajectory with the duration of a movement on each rectilinear section equal to the duration
of the observation “tact”. For each clock cycle, we denote the judgment "UUV absent” by
0, and the judgment "UUYV present” by 1. Then the results of making decisions on the UUV
trajectory can be represented by a sequence of zeros and ones. UUV will not be detected on
the path if there are no ones in the corresponding sequence of zeros and ones on the selected
path. The optimal trajectory is the one for which the probability of such an event is maximum.
Articles [5,11, 12] are devoted to the problems of optimal planning of the UUV route under
threat conditions, in which other probabilistic and energy criteria are implemented.

At CoDit 2020 conference results for optimal one-link trajectories of mobile vehicle,
evading from one sonar, were presented [13]. The detection of sonar is based on primary
hydro-acoustic field signals. But later in [14] it was shown, that sufficient optimal
conditions can brake and then multi-link trajectory becomes optimal. In that article problem
statements for two-link optimal trajectories were discussed. The current article considers the
algorithm for solving of the supplementary problem, needed for two-link optimal trajectories
constructing.

Firstly, in the article the non-detection probability of UUV on the route is derived.
Secondly, a path planning problem is formulated and analytically solved. Later in next chapter
the special case of two-link optimal trajectories is explored and the algorithm for finding such
trajectories is obtained. Finally, several examples are presented.

2. NON-DETECTION PROBABILITY OF UUV UNDER PASSIVE SURVEIL-
LANCE

The UUV covertness on the selected trajectory with a given speed law change can be
characterized by the probability P4 that during the passage of the route it will not be detected
at any tact. This probability is denoted P, 4 and will be called the non-detection probability of
UUYV on the trajectory. In the case of one sonar this probability is [3]
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where F), is x? is a probability distribution with n degrees of freedom, « is a false alarm
probability, v is an attenuation coefficient, r; is the distance from UUV to sonar at j tact,
starting from the moment of appearance of UUV on the trajectory, and v; is a constant speed
of UUV at this tact, og, oy, i1, 79, U9 are some model parameters. The number of factors in
the product is equal to the number of tacts when moving UUV along a trajectory. In the case
of several sonars, the product of expressions of the form (2.1) over all available sonars is
taken [1]. Thus the formalization of the UUV covertness concept is reduced to the formula
(2.1). Now the task is to construct the optimal trajectory and the optimal law of the UUV
velocity variation, maximizing the probability P,q.

Based on actual algorithms for information processing, using decisive threshold rules, in
the article [13] a formula was obtained for calculating the risk of mobile vehicle detection. It
is represented as an integral, which we call the threat functional [6], [13] in the problem of
UUYV route planning for the case of passive sonar

To 2
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This conclusion coincides with the result given in [3] for

2 (0 Jar Y02
i Mgo)ro% and 02 (t) = const. (2.3)
r

Moreover, for the path planning task, it is not required to know the exact values of the
information processing parameters because they are not included in (2.2).

3. PATH PLANNING PROBLEM

3.1. Risk functional

To formulate the path planning problem as the problem of calculus of variations let us rewrite
the risk functional (2.2). Due to (2.3), after omitting the constants the expression in integral
can take a general form as a power model

~ —. (3.4

As well as in [1] from the physical point of view this function is the instantaneous level
of signal S, received by the sensor. It depends on the current distance between sensor and
evading object r, for some types of physical fields — on absolute instant velocity of the object
v too and can be represented as

ot
S = prs (3.5)

The exponents k and p characterize the physical field used for detection. Depending on
values of k and p this can be magnetic, thermal, acoustic or electromagnetic fields.

Moreover, this signal depends on the receiving diagram of the sensor and the radiation

pattern of the object
UILL
§= 5 A(@)g(¥. ), (3.6)

where multiplier Ay(¢) is responsible for diagram of sensor antenna and g(1), ) is a radiation
pattern of the moving object. The risk R is the integral value of this signal, so the criterion of
optimization (2.2) is a function of phase coordinates of the object and qualities of the sensor
and the object itself:

To /.1
R / (j—kAow)g(w,so)) . 3.7)

We consider sensor antenna diagram to be homogeneous, so Ay(p) = 1. The geometric
meaning of angles ¢ and ¢ is as follows. Here 1) is the angle of rotation of object’s velocity
vector and ¢ is the angle of rotation of radius vector as shown in Fig. 3.1.

We study the case of £ = 2 and p = 2 for acoustic field. Non-uniform radiation pattern of
the object can be described as

9, 0) = g(B).
Thus signal expression (3.6) has a form
2
v
S = ﬁ9(5)~
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Fig. 3.1. The moving object in the Cartesian coordinate system with sensor S.

-

Fig. 3.2. Rectangular triangle of velocity vectors ¥, ¥ and ¥,.

3.2. Mathematical statement of the problem

Therefore we can formulate the optimal path planning problem.

Problem 3.1:
It is required to find such trajectory (r(t), ¢ )) which minimizes the functional

To
R= / (8 (3.8)

where v is a velocity of the object, r is the distance between the sensor and the object.
Boundary conditions are

r(0) =za, r(To) =15, ¥(0) = @a, »(To) = ¢5. (3.9)

Time Ty of moving on route from point A to B is fixed.

The detection system consists of one static sensor placed in the origin of Cartesian
coordinate system with X axis passing point A. The polar coordinate system is used for
solution simplicity.

It is easy to see that ¢ — ¢ = (3 is the angle in triangle built from radial v, and transversal
v,, velocities of the object, e.g. the angle between velocity of the object and its projection on
radius vector as shown in Fig. 3.2. Next lemma is valid.

Lemma 3.1:
Substitution of variable p = Inr brings functional (3.8) to the form

R(p(-), p(+)) = /OTO Sdt = /OTO (P* + %)y (arctan %) dt. (3.10)
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A proof for Lemma 3.1 can be found in [13].
Instead of solving the original Problem 1 according to Lemma 2 it is necessary to solve a
two point boundary value variational problem on the minimum of the functional (3.10).

Problem 3.2:
It is required to find the trajectory (p*(t), p*(t)), which minimizes the functional

. .
Rl o) = [+ ) g (aretan Z )i - min a1
. p () ()

with boundary conditions

p(0) = pa, p(T) = ps, ©(0) = @a, o(T) = ¢5.

4. SOLUTION OF THE PATH PLANNING PROBLEM

4.1. The Necessary Optimality Conditions

Theorem 4.1:

Suppose that 0 < g1 < g(B) < g2 for all 5 € |0,27] is a twice continuously differentiated
function of 3, where g1, g, are some constant values, and j(t), ¢(t) exist and are continuous
functions of t. Then the extremal trajectory satisfies the following system of equations

{ p = const, 4.12)

p = const.

Thus the extremal trajectory, which can be the solution for Problem 3.2 can be represented
in the parametric form of logarithmic spiral

o5 0 SDZ;A (4.13)
0
On the plane (7, ¢) this line has a form
r(p) = raexp (M In T—B) . 4.14)
¥YB— YA TA

Next two lemmas define the velocity law of the vehicle on the extremal trajectory and the
risk value on it.

Lemma 4.1:
The velocity law on the extremal trajectory Equation (4.14) is represented as follows
T4 t. rm Ry 2
t) = — —In— In® — — . 4.15
o) = oo (702 ) o 2t (on ) @.15)
Lemma 4.2:

The explicit dependence risk (3.11) from boundary conditions on the extremal trajectory
Equation (4.14) has the form
2 2 2
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¥B _QOA’ and I — \/(pB —pa)’ 4 (o5 —@a)? is the length of the
PB — PA

straight line segment between points A and B in the space (p, ).

where [y = arctan

The proofs of Lemmas 4.1 and 4.2 remain valid as shown in Reference [9].

4.2. The Sufficient Optimality Conditions

The sufficient optimality conditions for path planning problem 3.2 and the Hessian matrix
explicit form are presented in [9] as follows

Lemma 4.3:
Let S(p, p, o, p,t) = (p2 + @2) g (B), g(B) — thrice continuously differentiated function of 3,

then Hessian matrix H equals
_ ( Hun Hp
H= ( Hy  Ha )

where
2 PR o 2
Hui = % =29(B) - 2209 (63 +g'2 B)¢ )
_ s _ (- g B - )
IRk 4.17
_ s (pP-¢ )g’(ﬂ) g"(8) .17)
H2228Tb2:2g(ﬁ)+ P9 2+22 L,
and the Hessian itself is the determinant of the matrix
det H = 4¢°(8) +29(8)g"(8) — 4°(B). (4.18)

Theorem 4.2:

Assume that the conditions of Theorem 4.1, Lemma 4.3 are satisfied, and the inequality
det H > 0 is valid for all values [3. Then the optimal trajectory given by Equation (4.12)
brings the strong minimum to the risk functional Equation (3.11).

5. ALGORITHM FOR FINDING TWO-LINK OPTIMAL TRAJECTORIES

If conditions of theorem 4.2 are not fulfilled, e.g. det H < 0, then optimal trajectory can
consist of many segments of logarithmic spirals. The current article explores the case of
two segments, however it can be shown that any optimal multi-link trajectory is constructed
from segments of two base directions. As explained above, these segments in (p, ¢) space
transform into straight lines. This fact is illustrated in Figure 5.3.
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¥ — %o

0 P —Po
Fig. 5.3. The mobile vehicle in the (p, ¢) coordinate system.
Next Lemma allows to choose two optimal angles 3; and /35 from the whole set of such

angles, fulfilling the boundary conditions of the Problem. A corresponding to these angles
optimal risk is denoted as R*(/31, B2) and is calculated according to Lemma 4.2.

Lemma 5.1:
Angles (37, B for optimal trajectory can be found from system

cos(f2 — f1) = cos(§(B1) — &(B2)),

9(B2) _ cos®&(Bs) (5.19)
9(B1)  cos” ()’
1g'(8)

where function £(3) = arctan 5

9(B)”

We introduce two new functions

X(8) = B +£(p),
_ 92(8) (5.20)
n(B8) = w03 (5)
and rewrite the system (5.19) as
X(B1) = x(B2),
{ 1B = n(B). (5.21)

Notice that cos&(/3) > 0 according to definition function £() in Lemma 5.1. Thereby the
search of optimal two-link trajectories is reduced to the solution of the system (5.21).
Unfortunately, it can not be solved analytically, so we have developed a specific algorithm
for finding solutions of system (5.21).

First of all, let us investigate each of the functions x (/) and 7(() by extreme’s and find
their first derivatives

dx(8) _ 49*(8) = (9'(8))* + 29" (B)9(8)

g 49*(B) + (9'(8))

The numerator of this fraction is a part of expression for det H, so

dx—(ﬁ):() <= detH =0.

ap
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As for n(3) function we have

dn(B) _ 92(8)9'(8) Qe H

s 4g%(8)\/4g*(B) + g”(B)

From last expression follows

M:O <~ detH=0org(8)=0.

dp
The illustration of the Theorem 4.2 implementation is as follows. If det H > 0 for all
dx(P)
, th
B, then 3
solution for the first of the equations (5.21) and one-link trajectory is optimal.

Now we propose algorithm for finding system (5.21) solution. We consider 5 € [0°, 450°]
and denote all intervals § € (ag;_1,as),? = 1,.., N, where det H > 0.

> (), i.e. the function x() increases monotonically and therefore there is no

Algorithm 1: Algorithm for finding optimal values of (1, 5,
Result: 37, 35
initialization 51 = a4, f2 = a3, R* = R(/31,$2) whilei < N, i =i+ 1do
k=1+1;
while k < N, k=k+ 1do
find system (5.21) single solution (31, 2), 1 € [agi—1, azi], B2 € [aok—1, Qzk];
if such solution exists then
calculate R(f1, 52);
if R(B1, 52) < R* then
R = R(B1, Bo);
(6?755) = (Bla 62)7
else
| continue
end
else
| continue
end
end
end

The proposed algorithm has the following advantages. It looks for solutions on reduced
£ domains only where det H > 0 and additionally where solution is possible. All possible
optimal directions are found, regardless of the initialization values of the algorithm, as will
be shown in the example. The optimal value of the criterion depends on the directions 3; and
(5 and the length of the corresponding trajectory segments.

Moreover, that is an efficient algorithm. The only other way to find optimal angles (3, (2
is a brute force approach of sorting through all possible two-link trajectories, which is a much
more time-consuming process, compared to the algorithm above.

6. EXAMPLE

This section demonstrates the use of proposed algorithm in one model case. The considered
algorithm has been implemented in Matlab. Also Matlab scripts have been developed to
validate and illustrate obtained results.
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Figures 6.4 and 6.5 show a fairly simple radiation pattern of a mobile vehicle

_1+03 cos(45)

9(B) 3

(6.22)

-1 X
-1 0 1

Fig. 6.4. Radiation pattern of the mobile vehicle on Cartesian plane
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Fig. 6.5. Radiation pattern of the mobile vehicle as a function of 3

Figure 6.4 shows a radiation pattern on a Cartesian plane. This pattern is symmetrical
in respect to both Cartesian axes. The solid line represents the function ¢(/3) level line. The
value ¢(/3) is a radius-vector modulo directed from zero point to point lying on the shown
level line.

Figure 6.5, on the other hand, presents a radiation pattern as a dependence from f.

Figures 6.6 and 6.7 demonstrate functions x(3) and (/) respectively. Blue color solid
line segments on those graphs are assigned to intervals 5 € (ag;_1,as;), i = 1,.., N, where
det H > 0. We see that in the example N = 5.

Lay iaz lag as lag lag  iar lag  iag

0 50 100 150 200 A 250 300 350 400

Fig. 6.6. Function x(53)
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Fig. 6.7. Function n(3)

Let us introduce notation « for further exploration. We declare that for 5 € [ag;_1, ag]
and fixed £

a5,y = max(as;—1, arg(x(8) = x(azx-1))),

dy; = min(as;, arg(x(8) = x(azk)))-

T[his notat]ion takes place because x(() is monotonically increasing function on
B € lagi—1, asl.

Further we need to narrow down the exploration area on [ of functions x(53), n(f).
Figures 6.8 and 6.9 correspond to the first pair of narrowed intervals of hessian positivity
[a],ay] and [a}, a)j]. Black dots show found at this iteration of the algorithm 1 solutions [,
Ba.

x(/%)

2 i : : v
it ‘al /i ! /
0 aif 1A 1o azi oy W

20 40 60 80 4 100 120 140 160

Fig. 6.8. Enlarged segment of function x(53).
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Fig. 6.9. Enlarged segment of function (5).

So the domain of values of function x(/3) when § belongs to the first interval [a;, as]
do not cross with the same one when 3 belongs to the third, forth and fifth interval [as, ag],
[a7, as, [ag, a1o], then the algorithm continues searching the solution comparing intervals
two and three on /3, then three and four, and so on. Candidates of optimal pairs of (31, ;) are
approximately (59°,121°), (149°,211°), (239°,301°), (329°,391°).

These directions and trajectories are presented in Figure 6.10. If the direction [ lies in the
domain where det H > 0 then the optimal trajectory is one-link one. On the contrary if the
direction [, lies in the domain where det H < 0 then two-link trajectory is optimal. Found by
algorithm 1 optimal pairs (31, 52) in every domain where det H < 0 are the same as shown
on Figure 6.10.
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Fig. 6.10. Optimal trajectories for different /3.

7. CONCLUSIONS

The problem of minimizing the risk of UUV detection by a static sensor while moving
between two given points on a plane is solved. The detection is based on the primary acoustic
field radiated by the vehicle with a non-uniform radiation pattern, which differs this work
form the previous researches in the area. In the first part of the article, the non-detection
probability is derived. Further it is used as an optimization criterion in the path planning
problem. The optimal trajectory and velocity law of the UUV are found, as well as the risk
value.

A case of the two-link optimal trajectories is studied, when sufficient optimal conditions
are not fulfilled. A special algorithm has been developed for finding optimal angles of
logarithmic segments. It allows to solve the whole problem and find optimal angles 31, (5. In
practical applications this algorithm allows to preprocess these angles for all initial conditions
of (3, for a particular radiation pattern g(/3) of the mobile vehicle, store it in memory and use
later this information for onboard calculations. This approach saves a lot of computational
power, which is very important for resource-efficient missions.
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