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Abstract: EMG data processing and muscle activity recognition has become the most popular
method for upper limb prosthetics. The high sensitivity of EMG sensors with respect to external
disturbances and other factors prevent from accurate muscle activity recognition. The aim of the
paper is to investigate robustness of window recognition method with respect to muscle fatigue
and perspiration of the forearm skin. The current experiment was carried out using Arduino
nano microcontroller connected to EMG sensors. The subject under study is a healthy man of 26
years old with an average build. The subject was asked to do physical exercises, thereby loading
the muscles of the fingers of the hand to achieve partial or complete fatigue and perspiration.
During the whole process, EMG sensors have installed on the subject and transmitted the signal
to the computer using Arduino. All signal processing is done directly on the computer with a
pre-recorded signal. Experimental results have been shown that with the appearance of external
factors during prosthesis operation recognition accuracy may degrade to unsatisfactory. False
positives occur with perspiration of skin surface and complete muscle fatigue. An algorithm
for automatic self-correction of the boundaries of motion detection zones has been introduced.
Instead of identification of causes that leads to performance degradation, we use correction
scheduling started by timer. Experimental results have shown that proposed automatic adaptive
correction is effective. Despite higher recognition delay, proposed auto-tuning method provides
satisfactory muscle activity identification and feature extraction in real-time.
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1. INTRODUCTION

In recent decades, and especially in recent years, much effort has been made to implement
efficient control algorithms based on processing of electromyographic (EMG) signals [1].
EMG signals provide easy and non-invasive access to the physiological processes that
cause muscle contraction. That is why EMG technique is extensively used in control of
upper limb prostheses. Since the first attempts in the late 1940s [2], several EMG-based
algorithms have been developed to improve the functionality and ease of use of hand
prostheses [3]. Currently, EMG signal processing is the most common approach used to
manipulate prosthetic hands. Limitations in prosthetic mechanics and EMG data processing
are currently the main restriction to the development and implementation of a complete
bioelectric prosthesis [4–7]. Moreover, when it comes to recognizing myoelectric patterns,
the big problem is that statistical properties of EMG signal change over time. This leads
to the fact that control systems become unstable or difficult to use after a certain period of
time [8].

In practice, it is very important to maximize EMG data efficiency. To do this, it is
necessary to assess the condition of the end user of the prosthesis, observing the condition of
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the skin, tissues, skeletal anatomy, muscle strength and activity, as well as the range of motion.
Also, an important factor is monitoring the shape, amplitude, frequency of the signal. Only
after a complete study of the user it is possible design the system for correct receiving and
recognizing of EMG signal [9].

The high sensitivity of EMG sensors with respect to external disturbances and other
factors prevent from accurate muscle activity recognition. Such factors are investigated in [5].
Among them:

1. Muscle fatigue during work [10, 11].
2. Perspiration of the skin.
3. Displacement of sensitive elements [12–14].
4. Physiological characteristics of a person [15, 16].

Factors such as muscle fatigue and perspiration can lead to incorrect muscle activity
recognition and feature extraction. The researchers argue that the accumulation of sweat
under the sensor leads to a decrease in amplitude and filtering of high frequency components
[17–20]. However, little is known about the amount of sweat above which a number of
problems can arise. Many authors also study the effect of muscle fatigue on recognition. [21]
argue that with muscle fatigue, both the amplitude and frequency of the EMG signal change. It
was found that muscle fatigue is usually quantified as a decrease in maximum muscle strength
or power, resulting in different recordings of signals from EMG electrodes over time [22].
Various traits were examined to assess muscle fatigue, such as the wavelet transform [23,24],
the number of zero crossings [25], and autoregressive coefficients [26]. It is important to note
that muscle fatigue identification commonly is carried out in frequency domain. This is cased
by EMG spectrum shift towards lower frequencies [5].

In this paper, we investigate influence of muscle fatigue and perspiration at feature
selection accuracy performed by window method developed and presented in [27].
Additionally, fail-safe correction to prevent false recognition is introduced. In the proposed
method fatigue or perspiration identification technique is not used. This is caused by
low computational requirements and real-time implementation of the algorithm. Instead of
identification of causes that leads to performance degradation, we use correction scheduling
started by timer. The rest of the paper is organized as follows. Sect. 2 describes experimental
details and some necessary information on hardware and software equipment. Sect. 3 presents
main result of the paper. Some conclusive remarks and future works are emphasized in Sect. 4.

2. PRELIMINARIES

2.1. Hardware Description
The current experiment was carried out using Arduino nano microcontroller connected to
EMG sensors. Arduino nano was selected due to its low cost and low power consumptions.
The microcontroller itself is connected to the computer. All signal processing is done directly
on the computer with a pre-recorded signal. Matlab software is used for processing and
analysis received data.

To read the muscle activity we use EMG sensors from DF Robotics. These sensors
combine the filter circuit and the amplifier circuit. EMG sensor amplifies the minimum
electron diffraction signal within 1.5 mV by a factor of 1000 and suppress noise (especially
frequency interference) using a differential input and an analog filter. The output signal is
analog, which takes 1.5 V as the reference voltage. Output voltage range 0–3 V. The signal
level depends on the intensity of muscle activity. The output signal indicates muscle activity
and contributes to the analysis and study of the EMG signal.

For laboratory experiment, sensor surface has been cleaned and degreased at each sensor.
After that, 5 electrodes are placed on the upper and lower parts of the forearm in the correct
order. Most of the electrodes were located near the forearm (see Fig. 2.1), since the flexors
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Fig. 2.1. Location of EMG sensors.

and extensors of all fingers except the thumb are mainly located in this area. These muscles
are oriented mainly parallel to the axis between the elbow and the wrist. Unlike wearable
band or sleeve such kind of electrode location provides better EMG signal recording.

2.2. Software Tools
Before evaluating the influence of various factors on recognition, it is worth to briefly explain
an EMG signal recognition window method software. This algorithm is given and described
in [27]. We try to recognize finger movements as close to its physiological behavior as
possible. To this end we selected three levels of finger states. They are defined as follows:

G =

1, the muscle is relaxed,
2, the muscle is in half tense,
3, the muscle is in full tense.

In last expression, value G = 1 corresponds to straightened finger while values G = 2 and
G = 3 correspond to half and fully bent finger respectively.

Briefly, this algorithm can be summarized as follows:

1. Preparation of the sensor and signal reading.
2. Signal preprocessing and normalization. Preprocessing consists of sliding MAV

calculation within the window of length N . Here N is chosen experimentally to provide
satisfactory accuracy. Normalized signal is calculated as absolute difference between
sliding MAV and current measurement.

3. Boundary values ai and bi identification.
4. Depending on the area in which the processed signal is located, a decision is made on

the value of G as:

G(Xmax) =

1 if a1 < Xmax ≤ b1,
2 if a2 < Xmax ≤ b2,
3 if a3 < Xmax ≤ b3,

(2.1)
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Fig. 2.2. EMG data processing: a.) Raw signal. b.) Results of muscle activity recognition using window method.

where Xmax is a maximum value of normalized signal at the window of length N counts.

The result of muscle activity recognition using window method is depicted in figure 2.2.
Window algorithm has been tested for quality and correct operation under normal

conditions. Also, the window method was compared with artificial neural networks, which
made it possible to conclude about benefits of this method [27].

2.3. Methods
Identification algorithm, described in [27], was tested at 28 healthy people both males and
females from 20 to 55 years old. Identification error for both hands is depicted in Figure 2.3.
Analyzing the data obtained during the experiment, it was found that there are no substantial
differences in identification depending on age. Female muscle activity is defined a little bit
better than male. In view of this, it was decided to select a healthy man of 26 years old with
an average build for further experiments.

The subject was asked to do physical exercises, thereby loading the muscles of the
fingers of the hand. During the whole process, EMG sensors have installed on the subject
and transmitted the signal to the computer using Arduino. We note that EMG sensor data
for different sensors have the same waveform. So, the further investigation and illustrations
are carried out at one selected sensor dataset. The subject, due to physical exertion, led the
muscles of the finger to partial fatigue. After that, a signal was recorded with three types
of finger states. When the subject led to complete fatigue signal values for three types of
finger states was also recorded. After that these signals were analyzed. Another experiment
was to test the effect of perspiration on the EMG signal. For this, the subject was placed in a
special room with a high temperature where he also performed physical exercises. After that
EMG data recording was carried out similar to previous experiment. All the results of these
experiments are discussed below.

3. MAIN RESULT
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Fig. 2.3. Identification error statistics.

3.1. Muscle fatigue
The term muscle fatigue is used to describe a temporary decrease in one’s physical capacity of
performing motions. Several researchers investigate the impact of muscle fatigue using time
domain or frequency domain characteristics of EMG signal such that maximum amplitude or
power spectrum density [23]. Many efforts have been made to identify the level of fatigue. In
order to mitigate for the effects of fatigue research focuses on collecting data from multiple
levels of fatigue and utilizes the abundance of information. This requires recording more
data than a simple classification case and creates different computational requirements to the
system. Window method described in previous section also may suffer from muscle fatigue.
Further we investigate effect of muscle fatigue on feature extraction by window method.

In this experiment, the subject performed physical exercises with chest expander to load
the muscles with work until muscle would be tired. Experiment is stopped when muscle has
reached a complete fatigue. During all of the process, EMG recording was carried out. We are
interested in states of partially tired and completely tired muscles. EMG pattern of all three
finger positions is depicted in figure 3.4.

Figure 3.5 shows the raw EMG signal on an enlarged scale. One can see the difference
between two states, namely untired hand and completely tired one. Both signals indicate
relaxed muscles. It is noticeable that noises appear in the channel with accumulation of
fatigue. However, it can also be concluded that noises are not significant and can be neglected.
The root mean square (RMS) value is also not much different. RMS for ideal conditions is
equal 1.53 while partially tired and tired muscles gives RMS value equal to 1.51 and 1.53
respectively. The number of crossings of the mean square value is also the same. However,
the number of changes in the sign of the function and its amplitude are significantly different
due to the appearance of noise.

We should note that the best recognition accuracy is reached only when muscle is untired.
Partially tired muscles also provides satisfactory recognition. However, activity of tired
muscle cannot be recognized correctly. In figure 3.9 one can see that half tensed muscle
recognized with incorrectly almost in 50% cases.

3.2. Perspiration
Now let’s check how the system will behave if, during operation, the subject in the places
where the sensing element is placed is wet due to perspiration. For this, EMG data were
collected from the subject, after which he performed a series of physical exercises for
perspiration. The measurement result can be seen in figure 3.7.
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Fig. 3.4. Comparison of muscle fatigue charts: a.) untired muscle; b.) partially tired muscle; c.) tired muscle.

Fig. 3.5. Comparison of EMG shapes of untired and tired muscles.

It is shown that EMG signal has sufficiently distorted. In particular, the amplitude
decreased and the number of changes in the signal sign increased. The RMS has not changed
much. It is equal to 1.52. However, the number of RMS crossings has been increased. With
such strong interference, there is a possibility of false triggering of the recognition algorithm.
Figure 3.8 illustrates recognition results after perspiration. One can see that algorithm
provides false recognition during operation if parameters ai and bi are not corrected.
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Fig. 3.6. Results of muscle activity recognition for muscle fatigue: a.) untired muscle; b.) partially tired muscle;
c.) tired muscle.

Fig. 3.7. Comparison of waveforms with perspiration.

Results of muscle activity recognition under sweat skin surface has shown high
probability of false recognition. Figure 3.8 clearly shows that the boundaries that were
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Fig. 3.8. Results of muscle activity recognition operation for perspiration.

calculated before perspiration are no longer suitable and during operation, if the boundaries
are not automatically corrected, the user will lose control of the prosthesis.

3.3. Malfunction Correction
Experimental results have been shown that with the appearance of external factors during
prosthesis operation recognition accuracy may degrade to unsatisfactory. Therefore, it is
required to develop correction algorithm that performs correction of boundaries ai and bi to
provide fail-safe recognition. The most interesting case is automatic recalculation to perform
fail-safe recognition without manual mode even during active operating of the prothesis.

We propose the following boundary values correction strategy. The program code
for recalculation of new boundaries starts every 5 minutes in automatic mode without
user interaction. The 5 minutes time interval has been selected empirically after several
experiments. Time interval can be changed individually for each patient. The correction
process is a cycle in which the system inspects the user’s activity. After initialization of the
boundary correction, the system is switched to waiting mode and wait for muscle activities.
After activity detected, the correction algorithm collects about 150 measurements for each
type of muscle activity. When data for three types of muscle activity are collected, correction
step is carried out between contiguous movements, for example, between relaxed and half
tensed muscle. New boundaries are defined by the following relations:

Copyright © 2021 ASSA. Adv Syst Sci Appl (2021)



66 N. UNANYAN, A. BELOV

a1 = 0,

a2 = b1 =

N∑
i=1

Xrelaxed
i +

N∑
i=1

Xhalf
i

2N
,

a3 = b2 =

N∑
i=1

Xhalf
i +

N∑
i=1

X full
i

2N
,

b3 =

N∑
i=1

X full
i

N
+ 2.5,

(3.2)

where Xrelaxed
i , Xhalf

i , and X full
i are maximum window value for relaxed, partially tensed and

fully tensed muscle respectively, N is a number of counts for calculating the average value
(N = 150).

Table 3.1. Recognition accuracy of window method.

Muscle activity Relaxed Half
tensed Tensed

Fatigue
no correction, % 12 52 28.8

Fatigue
with correction, % 3.5 8.2 2.5

Perspiration
no correction, % 24 19.5 6

Perspiration
with correction, % 12 9.8 4.5

Results of muscle activity recognition before and after correction are given in table 3.1.
It is easy to see that correction algorithm allows to improve accuracy of window method.
Also we should note errors correspond to the transient process between states of muscle
activity. It has been experimentally obtained that overall delay in recognition between two
states of muscle activity may be increased up to 100 ms. This is satisfactory value for real-
time operations.

Additionally, we derive boundaries for ideal conditions (untired muscle and dry skin
surface) and corrected values for each type of deflection. Boundaries for ideal conditions are
defined in (3.3), corrected values for tired muscle are defined by (3.4), and corrected values
for sweaty skin are given by (3.5).

G =

1 if 0 < Xmax 6 0.11,
2 if 0.11 < Xmax 6 0.42,
3 if 0.42 < Xmax 6 3.3.

(3.3)

G∗
fatig. =

1 if 0 < Xmax 6 0.03,
2 if 0.03 < Xmax 6 0.3,
3 if 0.3 < Xmax 6 3.

(3.4)

G∗
persp. =

1 if 0 < Xmax 6 0.12,
2 if 0.12 < Xmax 6 0.45,
3 if 0.45 < Xmax 6 3.5.

(3.5)
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Fig. 3.9. Algorithm operation after border correction for muscle fatigue.

Fig. 3.10. Algorithm operation after border correction for perspiration.

One can see that for tired muscle corresponding boundary values are less than ideal ones
while corrected boundaries for sweaty skin surface are larger than ideal. The operation of
the algorithm after border correction can be seen in figures 3.9 and 3.10. It is shown that
proposed correction procedure provides improved recognition without substantial fails during
operation.
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4. CONCLUSION

The paper presents an experimental investigation of the influence of muscle fatigue
and perspiration on the recognition of muscle activity using EMG signal. A number of
experiments have been carried out. During study of the perspiration and muscle fatigue, it was
found that complete fatigue may increase identification error to unsatisfactory (over 50%).
Perspiration as well as fatigue leads to performance degradation. To improve identification
accuracy, automatic correction method has been proposed. Experimental results has shown
that proposed solution allows to improve working precision of the amplitude-based window
identification under perturbing factors. It has been shown that when deflection from ideal
conditions occurs, the algorithm adapts to changes.

The future works is focused on:

1. Study of other factors for EMG signal recognition.
2. Complex tests on several subjects with different parameters of external disturbance.
3. Development of rehabilitation strategy for amputees to provide prosthetic hand

operation.
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