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Abstract: Recently, single-image haze removal based on the dark channel prior (DCP), originally 

proposed by He et. al., has attracted much attention in the image restoration community. This 

dehazing algorithm, called the DCP scheme here, is well-known to have four main problems in its 

dehazed images: artifacts, hue distortion, color over-saturation, and halos. In this paper, an 

improved DCP (IDCP) is proposed to deal with the four aforementioned problems, by setting the 

model parameters, i.e. scaling factors and window size and smoothing factor of a guided image 

filter in the DCP scheme. Note that a dehazed image is generally dim and low in contrast. An 

adaptive gamma correction (AGC) is introduced for dehazed image enhancement. The proposed 

IDCP and AGC are used to create the IDCP/AGC scheme, in which the IDCP scheme performs 

haze removal and the AGC enhances the dehazed image. The IDCP/AGC scheme was justified 

through extensive experiments and compared with the DCP scheme, an optimization-based scheme, 

and two learning-based schemes on two datasets. The results indicated that the proposed scheme is 

subjectively and objectively superior to the comparison schemes. 

Keywords: dark channel prior, single image haze removal, adaptive gamma correction 

1. INTRODUCTION 

Image haze removal by far is an active research field in the image restoration and image 

enhancement community. The haze mainly resulted from the adversary weather condition 

degrades the visual quality of an image. A hazy image is generally of low contrast and visibility, 

which may affects the following computer visionary applications, such as video-based 

surveillance systems, automatic driver’s assistance systems, and object tracking/recognition 

systems. Since haze removal is in great need, much work has been done in this field. A popular 

class of haze removal schemes relies on statistical observations and thus assumptions, such as 

contrast assumption [1], un-correlation assumption [2], dark channel prior [3], and color line 

[4]. Besides, in [5], a pioneer work based on machine learning for single image haze removal 

was proposed. In [6], a multi-scale convolutional neural networks was presented to estimate 

parameters in the haze image model. In [7], an end-to-end framework based on a deep learning 

neural network for single image haze removal was introduced. In [8], another end-to-end 

framework, called all-in-one dehazing network, was proposed. In [9-10], generative 

adversarial networks were applied to image haze removal. For more other schemes, one may 

consult survey papers in [11-13]. 

This paper will concentrate on the popular scheme based on dark channel prior, which was 

originated by He et al. in [3]. The scheme will be called the DCP scheme hereafter. With its 
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simplicity, the DCP scheme has attracted much attention recently. However, the original DCP 

scheme has several problems needed to be improved, i.e. computational cost, artifacts, color 

distortion, and halos. To reduce the computational cost, in [14] He et al. used a guided image 

filter (GIF) to replace the soft matting algorithm in [3] for transmission map refinement. The 

artifacts and color distortion usually occur in the sky region of a dehazed image, while the 

problem of halos happens in large depth discontinuities. To improve the DCP scheme, many 

researchers have proposed a variety of solutions to relieve the aforementioned problems. Some 

of them are listed below. In [15], with a soft segmentation, the transmission map estimation 

was divided into two part: one for the sky region and the other for the non-sky region. For the 

sky region, a luminance model was applied to estimate the transmission map, while the dark 

channel prior was used to estimate the transmission map in the non-sky region. Then the two 

transmission maps were fused to obtain the final transmission map. In [16], a sky segmentation 

scheme based on quad-tree splitting was presented to deal with the problem of the DCP scheme 

in the sky region, where the transmission map was refined by an edge preserving GIF. In [17], 

the sky region is segmented through a quad-tree decomposition and region-growing scheme. 

Then the estimate of transmission map obtained from the dark channel was modified based on 

the segmented sky region. The atmospheric light was estimated through the segmented sky 

region. In [18], the transmission map was found through minimization of an energy function 

with a piecewise smooth assumption. In [19], a segmentation scheme based on the binary 

image from gradient image of input image was employed to separate sky regions, through 

which an estimate of atmospheric light was found. With the help of edge information, an initial 

transmission map was obtained and then refined by a GIF. In [20], a light intensity reverse 

algorithm was proposed to deal with the artifact problem in the sky region or white objects. 

By a threshold, the region of interest was segmented, whose RGB pixel values were replaced 

with a constant manually specified by the user. Then the DCP scheme was applied to find the 

dehazed image. In [21], the initial transmission map was found by the 5 × 5 minimum filter 

and then refined by the Sobel filter and mean filter. To avoid color distortion, a pixel-based 

adaptive lower bound for the final transmission map was calculated through a constrained 

piece-wise linear function. In [22], a saliency detection was proposed to extract white objects 

according to superpixel intensity contrast. Then the atmospheric light and transmission map 

were estimated with the preprocessed image. Besides, an adaptive upper bound was given to 

avoid over-exposure in dehazed images. In [23], a two-stage transmission map estimation was 

employed. In the first stage, a dehazed image was found by the DCP scheme. In the second 

stage, the pixel-based transmission map was obtained from the dehazed image. Then 

morphological operations were applied to find the final transmission map. Finally, the image 

was restored by the final transmission map and atmospheric light estimated by the DCP scheme 

in the first stage. 

In the aforementioned schemes, most of them use a segmentation skill to separate sky and non-

sky regions to avoid the artifacts and color distortion found in the sky region, since many 

researchers conjecture that the problem is due to the inappropriateness of dark channel prior 

for the sky region. Moreover, many researchers attribute the halo problem to the large depth 

discontinuities in the input image. However, the two conjectures are arguable. Though the dark 

channel prior is not suitable in the sky region or white objects, it may not suggest that the DCP 

scheme is inappropriate accordingly. In [3], it says that the sky and non-sky regions can be 

handled gracefully, even the DCP is not a good prior for sky regions. This paper will justify 

that the statement is correct, through the proposed improved DCP (IDCP) scheme, where no 

segmentation is required for the sky and non-sky regions. In addition, problems of artifacts, 

hue distortion, color over-saturation, and halos in the DCP scheme will be relieved by the 

proposed IDCP scheme through model parameter setting. Section 3 will have the details. 

In general, a dehazed image is dim and of low contrast. Conventional image enhancement 

methods, such as histogram equalization (HE) and gamma correction (GC), are not suitable 

for dehazed image enhancement, since over enhancement and color distortion happen most of 
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time. Even so, some researchers have tried to apply HE and GC to image haze removal. In 

[24], an adaptive GC was applied in the transmission map estimation. In [25], the haze image 

model and a GC were combined to form a model, called concise gamma-correction-based 

dehazing model. In their results, color distortion can be found in the given examples. In [26], 

a contrast limited adaptive HE (CLAHE) was applied to visibility enhancement of the dehazed 

image. However, over enhancement is found, when sky region is large. This paper will propose 

an adaptive gamma correction, which can be applied to dehazed image enhancement without 

color distortion. 

This paper has four main contributions. First, an alternative solution is proposed to the 

problems of artifact  and color distortion in sky regions, that is, by an adaptive scaling factor 

in the atmospheric light estimation. This is different from the sky and non-sky region 

segmentation schemes as described previously. Second, artifacts in the sky region and color 

distortion in a dehazed image is relieved by an adaptive scaling factor in the estimation of 

initial transmission map. Thus, no sky and non-sky region segmentation is required. This 

provides a way to mitigate this problem. Third, the halo problem happened in large 

discontinuities is solved by a GIF parameter setting in the transmission refinement. This doing 

gives a solution to the halo problem. Fourth, an adaptive gamma correction (AGC) is presented 

to alleviate the color distortion in the conventional gamma correction. Then the proposed AGC 

is employed to dehazed image enhancement. This brings for the possibility to apply gamma 

correction in the image haze removal field. 

This paper consists of two parts. The first part is to present an improved DCP (IDCP) dehazing 

scheme and the second part is to introduce an adaptive gamma correction (AGC) as a post-

processing to enhance the dehazed image. In Section 2, the DCP scheme is briefly reviewed. 

In Section 3, the proposed IDCP dehazing scheme and the proposed AGC for dehazed image 

enhancement are introduced. Then the two schemes are combined as the IDCP/AGC scheme. 

Next, the proposed IDCP/AGC scheme is extensively justified by two image datasets and 

compared with four dehazing schemes in Section 4. Finally, conclusion is made in Section 5. 

2. REVIEW OF THE DCP SCHEME 

The DCP scheme is based on the following haze image model, 

𝑰(𝑥) = 𝑱(𝑥)𝑡(𝑥) + 𝑨[1 − 𝑡(𝑥)]                            (2.1) 

where 𝑰(𝑥)  is the observed hazy image; 𝑱(𝑥)  is the haze-free image; 𝑨  is the global 

atmospheric light or simply atmospheric light; 𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥) is the transmission map which 

represents the portion of the non-scattered light to the camera; 𝛽 is the scattering coefficient 

of the atmosphere and 𝑑(𝑥) is the scene depth at position 𝑥. 

The DCP scheme is based on the following observation. In general, at least one of RGB 

components has very low intensity in the non-sky pixels of a haze-free image. This statistical 

observation is called dark channel prior in [3], which can be obtained through a block 

minimum filter. The result is called dark channel. Fig. 2.1 is an example to justify the dark 

channel prior where the 15×15 minimum filter is employed. 

  
(a)                                        (b) 

Fig. 2.1. Image Forest (a) original (b) the corresponding dark channel 

The derivation to obtain the initial transmission map in [3] is briefly reviewed in the following. 

Assume a hazy image 𝑰 is in the RGB color space and without sky regions or white objects. 

When considering one component of 𝑰, Eq. (2.1) can be rewritten as 



98             C.-H. HSIEH, Y.-H. CHANG 

Copyright ©2021 ASSA.                                                                                    Adv. in Systems Science and Appl. (2021) 

𝐼𝑐(𝑥) = 𝐽𝑐(𝑥)𝑡(𝑥) + 𝐴𝑐 − 𝐴𝑐𝑡(𝑥)                        (2.2) 

where 𝑐 ∈ {𝑅, 𝐺, 𝐵}. Next, Eq. (2.1) is normalized by 𝐴𝑐   and is obtained as 
𝐼𝑐(𝑥)

𝐴𝑐
=

𝐽𝑐(𝑥)

𝐴𝑐
𝑡(𝑥) + 1 − 𝑡(𝑥)                        (2.3) 

Assume the transmission map within the block Ω(𝑥) is a constant. Through a block minimum 

filter, the dark channel in Eq. (2.3) is obtained as 

min
𝑦∈Ω(𝑥)

min
𝑐

[
𝐼𝑐(𝑥)

𝐴𝑐
] = �̃�(𝑥) min

𝑦∈Ω(𝑥)
min

𝑐
[

𝐽𝑐(𝑥)

𝐴𝑐
] + 1 − �̃�(𝑥)           (2.4) 

where �̃�(𝑥) denotes as the initial transmission map. By the property of dark channel prior, the 

dark channel for haze-free image 𝐽𝑐(𝑥) approaches to zero and thus min
𝑦∈Ω(𝑥)

min
𝑐

[
𝐽𝑐(𝑥)

𝐴𝑐
] = 0 is 

considered in Eq. (2.4). Consequently, by Eq. (2.4) the initial transmission map can be 

estimated from the input image 𝑰 as 

�̃�(𝑥) = 1 − min
𝑦∈Ω(𝑥)

min
𝑐

[
𝐼𝑐(𝑥)

𝐴𝑐
]            (2.5) 

To avoid the halo problem, the initial transmission map �̃�(𝑥) is further refined by the soft 

matting algorithm in [3] or a guided image filter (GIF) in [14]. For more details, one may 

consult [3, 14]. 

Given image 𝑰 in the RGB color space, the implementation steps of the DCP scheme are given 

as follows. 

Step 1.  Find the initial block dark channel through a block minimum filter as 

𝐼Ω
𝑑𝑎𝑟𝑘(𝑥) = min

𝑦∈Ω(𝑥)
min

𝑐
[𝐼𝑐(𝑦)]            (2.6) 

where Ω(𝑥) is a 𝑁 × 𝑁  window centered at 𝑥  and 𝑐 ∈ {𝑅, 𝐺, 𝐵}. In [3], 𝑁 = 15 is 

employed. 

Step 2. Estimate the atmospheric light 𝑨 = [𝐴𝑅  𝐴𝐺  𝐴𝐵] by 𝐼Ω
𝑑𝑎𝑟𝑘(𝑥). Find the 0.1% pixels of 

the highest values in 𝐼Ω
𝑑𝑎𝑟𝑘(𝑥); trace back to the corresponding pixels in image 𝑰; and 

find the pixel with the highest intensity as the estimate of 𝑨. 

Step 3. Calculate the normalized block dark channel as 

𝐼Ω̅
𝑑𝑎𝑟𝑘(𝑥) = min

𝑦∈Ω(𝑥)
min

𝑐
[

𝐼𝑐(𝑦)

𝐴𝑐
]                            (2.7) 

Step 4. Obtain the initial transmission map as 

�̃�(𝑥) = 1 − 𝜔 × 𝐼Ω̅
𝑑𝑎𝑟𝑘(𝑥)                    (2.8) 

where 0 < 𝜔 ≤ 1 is a scaling factor.  In [3], 𝜔 is set to 0.95. 

Step 5. Refine the initial transmission map �̃�(𝑥) by the soft matting algorithm in [3] or by the 

GIF) in [14] to obtain the final transmission map 𝑡(𝑥). When the GIF is used, the 

settings given in [14] are as follows: the input image 𝑰 as the guidance image; the 

window size 𝑁 = 20; the smoothing factor 𝜖 = 0.001. 

Step 6. Recover the scene radiance as 

𝐽𝑐(𝑥) =
𝐼𝑐(𝑥)−𝐴𝑐

max[𝑡0,𝑡(𝑥)]
+ 𝐴𝑐                            (2.9) 

where 𝑡0 is a user-defined lower bound of 𝑡(𝑥). It is set to 0.1 in [3]. 

3. THE PROPOSED IDCP SCHEME AND AGC 

This section will introduce the proposed IDCP haze removal scheme and the AGC for dehazed 

image enhancement in this study. In Section 3.1, the IDCP scheme is presented to improve the 

DCP performance. Then, the post-processing AGC scheme is proposed to enhance the visual 

quality of the dehazed image by the IDCP scheme in Section 3.2. 

3.1. The IDCP dehazing scheme 

It is well-known that for better performance, at least four problems should be appropriately 

addressed in the DCP scheme: estimation of 𝑨, estimation of 𝑡(𝑥), the sky/non-sky region 

handling, and halos. The solutions in the IDCP scheme are given below. 
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3.1.1. Atmospheric light estimation 

In the DCP scheme, the hue distortion is often found in the dehazed images, especially in the 

sky region. To see the problem, image Village is served as an example, which is shown in Fig. 

3.1(a). The dehazed image by the DCP is shown in Fig. 3.1(b) where the sky region is of hue 

distortion. In [27], it has proven that the hue distortion in a dehazed image results from the 

estimation error of 𝑨. In other words, the problem of hue distortion in the DCP scheme is from 

an inappropriate estimation of 𝑨. Fortunately, the problem can be relieved by introducing a 

scaling factor 𝛼 on 𝑨. In the DCP scheme, the scaling factor of 𝑨 can be considered as 𝛼 = 1 

as in Eq. (2.6). When 𝛼 = 0.85, the dehazed image is shown in Fig. 3.1(c). Obviously, the hue 

distortion is relieved by scaling 𝛼 value. Thus, an adaptive scaling factor 𝛼𝑎 will be employed 

in the IDCP scheme. By experiments, 𝛼𝑎 = min[(𝜇1)0.0975, 0.975] works well most of time, 

where 𝜇1 = mean[𝐼1
𝑑𝑎𝑟𝑘(𝑥)] and 𝐼1

𝑑𝑎𝑟𝑘  the pixel-based dark channel. Besides, 𝐼Ω
𝑑𝑎𝑟𝑘(𝑥)  in 

Step 2 of the DCP scheme is replaced by 𝐼1
𝑑𝑎𝑟𝑘 to find 𝑨 for efficiency. 

   
(a)                            (b)                             (c) 

Fig. 3.1. Image Village (a) original (b) 𝛼 = 1 (c) 𝛼 = 0.85 

3.1.2. Initial transmission map estimation 

In the DCP scheme, the fixed scaling factor 𝜔 = 0.95, as in Eq. (2.8), is used to find the initial 

transmission map �̃�(𝑥) according to the aerial perspective phenomenon. However, we find that 

artifacts in the sky region and color distortion in a dehazed image are caused by the 

inappropriate fixed scaling factor 𝜔 = 0.95 . Thus, it introduces the related distortions 

accordingly. To see the problem, image Dogs is given as an example, which is shown in Fig. 

3.2(a). After the DCP scheme, the dehazed image is depicted in Fig. 3.2(b), which shows the 

artificial contours and color distortion due to 𝜔 = 0.95. Fortunately, an adaptive scaling factor 

𝜔𝑎  can help the situation. With 𝜔 = 0.65, the result is given in Fig. 3.2(c). In the IDCP 

scheme, an adaptive scaling factor 𝜔𝑎 will be employed to estimate initial transmission map 

�̃�(𝑥) . As a rule of thumb, 𝜔𝑎 = min [(𝜇0.9)0.325, 0.95]  is employed where 𝜇0.9 =

mean[𝐼Ω̅
𝑑𝑎𝑟𝑘(𝑥) ≤ 0.9] and 𝐼Ω̅

𝑑𝑎𝑟𝑘(𝑥) the normalized block-based dark channel. 

   
(a)                              (b)                              (c) 

Fig. 3.2. Image Dogs (a) original (b) 𝜔 = 0.95 (c) 𝜔 = 0.65 

3.1.3. Sky and non-sky region handling 

In [3], it says that the sky and non-sky regions can be handled gracefully, even the DCP is not 

a good prior for sky regions. The statement can be verified as follows. In a bright sky region, 

the pixel intensity 𝐼𝑐(𝑥) → 1; the atmospheric light 𝐴𝑐 → 1; the normalized dark channel 

𝐼Ω̅
𝑑𝑎𝑟𝑘(𝑥) → 1; the transmission map 𝑡(𝑥) → 1, and thus the dehazed scene can be found as 

𝐽𝑐(𝑥) =
𝐼𝑐(𝑥)−𝐴𝑐

max[𝑡0,𝑡(𝑥)]
+ 𝐴𝑐 → 𝐴𝑐                 (3.1) 

which is generally consistent with the real situation. Consequently, by Eq. (3.1) there is no 

need to handle sky and non-sky regions separately, though many published papers headed 
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toward the way to the sky/non-sky region segmentation. In other words, the DCP scheme can 

be applied to the sky and non-sky regions equally well, if appropriate parameters are employed. 

By our observations, the problems of color over-saturation distortion, hue distortion, artifacts, 

and over-exposure found in the sky region come from inappropriate estimations of 𝑨 and 𝑡(𝑥). 

This can be verified by Fig. 3.1 and Fig. 3.2. In the IDCP scheme, these problems can be 

relieved by setting parameters appropriately. 

3.1.4. Initial transmission map refinement 

In general, halos occur in the large depth discontinuities of a dehazed image. It is observed 

that the halo problem in the DCP scheme comes from an inappropriate parameter setting in the 

GIF for transmission map refinement. In the GIF, three parameters are guidance image 𝑰𝑔, 

window size 𝑁, and smoothing factor 𝜖. In the DCP scheme, 𝑰𝑔 is the input image 𝑰; 𝑁 = 20; 

𝜖 = 0.001. By observations, we find that appropriately setting parameters 𝑁 and 𝜖 in the GIF 

is able to deal with the halo problem. A large 𝑁 in the GIF reduces the halo effect in a dehazed 

image. However, it introduces minor color over-saturation. Fortunately, it can be solved by 

using a large 𝜖. 

A. The effect of 𝑁 

Here, image House, shown in Table 3.1, is used as an example to investigate the effect of the 

GIF parameters, 𝑁 and 𝜖, on a dehazed image. In the simulation, the DCP scheme is employed 

with the GIF setting 𝑁 = 20 and 𝜖 = 0.001, as suggested in [14]. To investigate the effect of 

parameter 𝑁, 𝜖 is fixed at 0.001. The dehazed images with different values of 𝑁, i.e. 20, 40, 

and 55, are given in Table 3.1, where the corresponding refined transmission 𝑡(𝑥) are also 

shown for comparison. In the case of 𝑁 = 20, the dehazed House has a severe halo problem 

at large depth discontinuities. As 𝑁 increases to 40, the halos diminish significantly. When 

𝑁 = 55, the halo is not visible at all. Besides, one may observe that the significant edges in 

𝑡(𝑥) become more clear and more details appear, as 𝑁 varies from 20 to 55. It implies that a 

large window size may avoid the halo problem, as expected. Consequently, 𝑁 = 55 will be 

used in the proposed IDCP scheme. Though the window size 𝑁 = 55 is able to deal with the 

halo problem, minor color over-saturation is found in the dehazed House, as shown in the 

fourth row of Table 3.1. Fortunately, the introduced distortion can be avoided by setting 

smoothing factor 𝜖. The following subsection has the details. 

Table 3.1. The effect of 𝑁 in the GIF on the dehazed image House. 

GIF setting 𝑡(𝑥) 𝐽(𝑥) Original image 

𝑁 = 20 

𝜖 = 0.001 

   

𝑁 = 40 

𝜖 = 0.001 

  

 

𝑁 = 55 

𝜖 = 0.001 
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B. The effect of  𝜖 

The effect of smoothing parameter 𝜖  on the dehazed House is investigated here. In the 

simulation, 𝜖 is set to 0.001, 0.05, and 0.1, where 𝑁 is fixed at 55. The corresponding dehazed 

images and their corresponding 𝑡(𝑥) are given in Table 3.2, respectively. By Table 3.2, one 

can observe that the details of 𝑡(𝑥) has been smoothened more and more, as 𝜖 increases from 

0.001 to 0.1. Besides, the problem of color over-saturation gradually relieves, as 𝜖 becomes 

larger. It suggests that the problem of color over-saturation can be dealt with a large 𝜖, i.e. 0.1. 

Thus, the smoothing factor 𝜖 = 0.1 will be employed in the proposed IDCP scheme. 

Table 3.2. The effect of 𝜖 in the GIF on the dehazed image House. 

GIF setting 𝑡(𝑥) 𝐽(𝑥) Original image 

𝑁 = 55 

𝜖 = 0.001 

   

𝑁 = 55 

 𝜖 = 0.05 

  

 

𝑁 = 55 

𝜖 = 0.1 

  

 

3.1.5. Implementation of the IDCP scheme 

With the above discussion, the proposed IDCP scheme is summarized in the following 

implementation steps, where input image 𝑰 is assumed in the RGB color space. 

Step 1. Find the pixel-based dark channel as 

𝐼1
𝑑𝑎𝑟𝑘(𝑥) = min

𝑐
[𝐼𝑐(𝑥)]             (3.2) 

where 𝑐 ∈ {𝑅, 𝐺, 𝐵}. 

Step 2. Find the maximum in 𝐼1
𝑑𝑎𝑟𝑘(𝑥) and its corresponding pixel in 𝑰, 𝒑𝑚𝑎𝑥. Then estimate 

the atmospheric light as 𝑨 = [𝐴𝑅  𝐴𝐺  𝐴𝐵] = 𝛼𝑎 × 𝒑𝑚𝑎𝑥 , where 𝛼𝑎 =
min[(𝜇1)0.0975, 0.975] and 𝜇1 = mean[𝐼1

𝑑𝑎𝑟𝑘(𝑥)]. 
Step 3. Calculate the normalized block-based dark channel as 

𝐼Ω̅
𝑑𝑎𝑟𝑘(𝑥) = min

𝑦∈Ω(𝑥)
min

𝑐
[

𝐼𝑐(𝑦)

𝐴𝑐
]                   (3.3) 

Step 4. Obtain the initial transmission map as 

�̃�(𝑥) = 1 − 𝜔𝑎 × 𝐼Ω̅
𝑑𝑎𝑟𝑘(𝑥)                (3.4) 

where 𝜔𝑎 = min [(𝜇0.9)0.325, 0.95] and 𝜇0.9 = mean[𝐼Ω̅
𝑑𝑎𝑟𝑘(𝑥) ≤ 0.9]. 

Step 5. Find the final transmission map 𝑡(𝑥)  through refining �̃�(𝑥)  by the GIF with the 

guidance image 𝐼1
𝑑𝑎𝑟𝑘(𝑥), the window size 𝑁 = 55, and the smoothing parameter 𝜖 =

0.1. 

Step 6. Estimate the dehazed image as 

𝐽𝑐(𝑥) =
𝐼𝑐(𝑥)−𝐴𝑐

max[𝑡0,𝑡(𝑥)]
+ 𝐴𝑐          (3.5) 

where 𝑡0 = 0.1 is a user-defined lower bound of 𝑡(𝑥). 
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In comparison with the DCP scheme described in Section 2, the proposed IDCP scheme has 

at least four main differences. First, the pixel-based dark channel 𝐼1
𝑑𝑎𝑟𝑘(𝑥) is used to estimate 

the atmospheric light 𝑨 with an adaptive scaling factor 𝛼𝑎. Second, 𝐼1
𝑑𝑎𝑟𝑘(𝑥) is employed as 

the guidance image in the GIF to refine the initial transmission map �̃�(𝑥). This helps improve 

the efficiency. Third, an adaptive scaling factor 𝜔𝑎  is applied in the estimation of initial 

transmission map �̃�(𝑥) to avoid the artifacts and color distortion happened in the sky region. 

This doing makes the proposed IDCP scheme is able to deal with the sky and non-sky regions 

equally well, without segmentation. Fourth, the GIF setting with large 𝑁 = 55 is employed to 

relieve the halo problem, while large 𝜖 = 0.1 is to handle the color over-saturation. With those 

modifications, the proposed IDCP scheme shows much better performance than the DCP 

scheme. This will be verified in Section 4. 

3.2. Dehazed Image Enhancement with an AGC 

A dehazed image generally is dimmer than its original image. Consequently, an adaptive 

gamma correction (AGC) is used to improve visual quality of dehazed images. The AGC is 

modified from a conventional gamma correction (CGC). Given image 𝑰𝑖, whose elements are 

denoted as  𝐼𝑖
𝑐(𝑥) and 𝑐 ∈ {𝑅, 𝐺, 𝐵}, a CGC transforms  𝐼𝑖

𝑐(𝑥) to a new value  𝐼𝑜
𝑐(𝑥) as 

𝐼𝑜
𝑐(𝑥) = [

𝐼𝑖
𝑐(𝑥)

𝐼𝐻
𝑐 ]

𝑔

𝐼𝐻
𝑐              (3.6) 

where 𝐼𝐻
𝑐 = max

𝑥
[𝐼𝑖

𝑐(𝑥)] is the maximum value in component 𝑐. When put the dynamic ranges 

of input image  𝑰𝑖  and output image  𝑰𝑜 into account, Eq. (3.6) can be rewritten in a more 

general form as 

𝐼𝑜
𝑐(𝑥) = [

𝐼𝑖
𝑐(𝑥)−𝐼𝐿

𝑐

𝐼𝐻
𝑐 −𝐼𝐿

𝑐 ]
𝑔

[𝐼𝑜,𝐻
𝑐 − 𝐼𝑜,𝐿

𝑐 ] + 𝐼𝑜,𝐿
𝑐       (3.7) 

where 𝐼𝐿
𝑐 = min

𝑥
[𝐼𝑖

𝑐(𝑥)] and 𝐼𝐻
𝑐 = max

𝑥
[𝐼𝑖

𝑐(𝑥)]. Notations 𝐼𝑜,𝐿
𝑐  and 𝐼𝑜,𝐻

𝑐  are user-defined lower 

limit and upper limit of 𝐼𝑜
𝑐(𝑥) for the output image  𝑰𝑜, respectively. The superscript 𝑔 in Eq. 

(3.7) is a user-defined factor. It is well-known that the CGC suffers from the problem of color 

distortion. Therefore, it hinders the application to dehazed image enhancement. An example, 

image Women, is given in Fig. 3.3(a), where the dehazed image, shown in Fig. 3.3(b), is 

obtained by the proposed IDCP scheme. The dehazed image, post-processed by the CGC, is 

shown in Fig. 3.3(c) which has a noticeable color distortion. 

     
     (a)                           (b)                               (c)                              (d)  

Fig. 3.3. Image Women (a) original (b) after the proposed IDCP scheme (c) with the CGC (d) with the AGC 

To relieve the color distortion in the CGC, an adaptive gamma correction (AGC) is introduced 

here. By our observations, the color distortion in the CGC results from the inappropriate set of 

upper and lower limits, [𝐼𝐿
𝑐 𝐼𝐻

𝑐 ]. Consequently, the proposed AGC replaces the set [𝐼𝐿
𝑐 𝐼𝐻

𝑐 ] with 

set [𝐼𝐿  𝐼𝐻] where  𝐼𝐿 = min
𝑐

[𝐼𝐿
𝑐] and 𝐼𝐻 = max

𝑐
[𝐼𝐻

𝑐 ]. With the set [𝐼𝐿  𝐼𝐻], Eq. (3.7) is modified 

as 

𝐼𝑜
𝑐(𝑥) = [

𝐼𝑖
𝑐(𝑥)−𝐼𝐿

𝑐

𝐼𝐻−𝐼𝐿
]

𝑔𝑎

[𝐼𝑜,𝐻
𝑐 − 𝐼𝑜,𝐿

𝑐 ] + 𝐼𝑜,𝐿
𝑐        (3.8) 

where 𝑔𝑎  is an adaptive factor. 

The way to determine parameter 𝑔𝑎  in Eq. (3.8) is discussed below. Note that the parameter 

𝜔𝑎 for initial transmission map estimation affects the strength of haze removal significantly. 

That is, a larger 𝜔𝑎  results in a stronger dehazing effect and vice versa. A stronger haze 

removal makes the dehazed image dimmer in general. Consequently, 𝑔𝑎  should be inversely 
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related to 𝜔𝑎. To increase the brightness, 𝑔𝑎  is restricted to be less than 1 and greater than 0.7 

to avoid artifacts. By experiments, 𝑔𝑎 = max[(1 − 𝜔𝑎)0.095, 0.707] is employed in the AGC. 

With this 𝑔𝑎 , the proposed AGC is applied to Fig. 3.3(b), whose result is shown in Fig. 3.3(d). 

As expected, the color distortion is avoided and visual quality is enhanced. Since the proposed 

AGC is a post-processing scheme, it can be added to the proposed IDCP scheme after Step 6 

in Section 3.1.5. That is, 

Step 7. Enhance the dehazed image �̂� by the AGC. 

The combination of the IDCP scheme and the AGC will be call the IDCP/AGC scheme. 

4. RESULTS AND DISCUSSIONS 

In this section, the proposed IDCP/AGC scheme is justified by the datasets RESIDE in [13] 

and KeDeMa in [28]. The RESIDE dataset is a large-scale benchmark for single image 

dehazing algorithms, which consists of synthetic and natural images. In the following 

experiments, the indoor training set (ITS) [29] is employed, that has 10,000 clear images and 

100,000 synthetic hazy images generated by Eq. (2.1) with various 𝐴 and 𝛽 . Besides, the 

outdoor training set (OTS) [30] is also used, which consists of 3,981 clear images and 136,160 

synthetically generated hazy images. By the large amount of images, the proposed IDCP/AGC 

scheme is justified and compared with four recently reported haze removal schemes in Section 

4.1, where both objective and subjective evaluation are considered. The four compared 

schemes are the conventional DCP scheme in [14], the optimization-based scheme in [31], 

which will be called RRO scheme, the learning based scheme in [32], which will be called 

CAP scheme, and the deep learning based scheme DehazeNet (DNet for short) in [33]. In 

Section 4.2, the KeDeMa dataset is used, which consists of 25 natural hazy images with 

different scenarios, to further verify for the proposed IDCP/AGC scheme, objectively and 

subjectively, and compared with the DCP, RRO, CAP, and DNet schemes. 

In addition to the subjective comparison, the performances of the related schemes are also 

justified objectively. To compare the related schemes in different aspects, the objective 

assessments include full-reference methods: the peak signal-to-noise ratio (PSNR) and the 

structural similarity index measure (SSIM) in [34]; half-reference method: the dehazing 

quality index (DHQI) in [35]; no-reference methods: the blind/reference-less image spatial 

quality evaluator (BRISQUE) in [36] and the integrated local natural image quality evaluator 

(IL-NIQE) in [37]. The compared results are given below. 

4.1 Results and comparisons with the RESIDE dataset 

To justify the performance of the proposed IDCP/AGC scheme, an extensive experiment is 

conducted with the RESIDE dataset in this section, where the results from the four compared 

schemes are also given for objective and subjective comparisons. First, the proposed 

IDCP/AGC scheme and the compared schemes are run with the ITS dataset in Section 4.1.1 

and then OTS dataset in Section 4.1.2. 

4.1.1. Results with the ITS dataset 

In this subsection, the IDCP/AGC scheme is verified by the ITS dataset. The results for the 

four compared schemes are also given for comparison. The first part shows the objective 

results, where the performance indices PSNR, SSIM, DHQI are better for a higher value, while 

BRISQUE, IL-NIQE are the less the better. In the second part, subjective results will give for 

visual comparison. 

A. Objective comparison with the ITS dataset 

The objective comparisons with PSNR, SSIM, DHQI, BRISQUE, IL-NIQE are shown in 

Table 4.1, for the proposed IDCP/AGC scheme and the compared schemes, where the ranking 

is shown in parentheses. By the results, the DCP scheme has the best and second best in 
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BRISQUE and IL-NIQE, respectively. However, it has the worst ranking in PSNR, SSIM, and 

DHQI. That is, the DCP scheme lies on either the worst end or the best end with the average 

ranking 3.6. For the RRO scheme, it ranks the second best in BRISQUE; the third place in 

DHQI and IL-NIQE; the fourth place in PSNR and SSIM. It ends with the average ranking 3.2. 

As for the CAP scheme, it has the second best PSNR; the third place in SSIM; but the fourth 

place in DHQI and BRISQUE, and the worst ranking in IL-NIQE. The average ranking is 3.6. 

As for the DNet, it has the best PSNR and SSIM; the second best in DHQI; but the fourth place 

in IL-NIQE and the worst ranking in BRISQUE. Its average ranking is 2.6. The ranking of the 

proposed IDCP/AGC scheme falls within the top three among full-reference, semi-reference, 

and no-reference assessments. It suggests that the performance of the proposed IDCP/AGC 

scheme has a relatively stable performance among the compared schemes. Overall, the 

proposed IDCP/AGC scheme has the best performance, then DNet, RRO, CAP, and DCP 

schemes, in terms of the average ranking (AR). 

Table 4.1. Objective comparison with the ITS dataset 

 IDCP/AGC DCP RRO CAP DNet 

PSNR 19.1669(3) 16.4216(5) 18.2363(4) 19.5537(2) 20.3097(1) 

SSIM 0.8742(2) 0.8374(5) 0.84681(4) 0.8733(3) 0.8909(1) 

DHQI 59.8120(1) 55.6912(5) 57.3045(3) 56.9135(4) 59.2964(2) 

BRISQUE 15.6748(3) 13.4386(1) 13.9044(2) 19.1409(4) 22.6275(5) 

IL-NIQE 32.6799(1) 33.4390(2) 33.5820(3) 33.9286(5) 35.3254(4) 

AR 2(1) 3.6(4) 3.2(3) 3.6(4) 2.6(2) 

B. Subjective comparison with the ITS dataset 

In addition of objective comparison, the subjective comparison is also given for the ITS 

dataset. Here, six images are selected to subjectively evaluate the proposed IDCP/AGC scheme 

and the compared schemes. The six images include two less hazy images (No. 1 and No. 2), 

two moderate hazy images (No. 3 and No. 4), and two heavy hazy images (No. 5 and No. 6), 

which are shown in Table 4.2. For reference, the image filenames in ITS  are also given in 

Table 4.2 with the associated PSNR for each selected image. By Table 4.2, the DCP scheme 

tends to have hue distortion and color over-saturation in all six dehazed images. The RRO 

scheme has hue distortion in images 2, 4, and 5; minor color over-saturation for images 1 and 

3. The dehazing effect of the CAP scheme seems not strong enough, especially for the heavy 

hazy images 5 and 6. Basically, the DNet scheme performs well in the cases of less hazy and 

moderate images, but fails to remove haze in heavy hazy images 5 and 6. As for the proposed 

IDCP/AGC scheme, it provides better visual quality in the dehazed images. 

Table 4.2. Subjective comparison with the ITS dataset (6 selected images) 

No Clear Input IDCP/AGC DCP RRO CAP DNet 

1 

       
  0025_08_0.7048 PSNR=31.26 16.32 24.97 22.42 20.17 

2 

       
  1075_03_0.7312 PSNR=30.72 13.29 13.96 24.53 25.63 

3 

       
  0499_05_0.8353 PSNR=22.63 15.50 21.89 19.78 21.47 
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4 

       
  0691_09_0.8315 PSNR=24.53 19.06 18.08 20.01 23.91 

5 

       
  0803_10_0.9055 PSNR=22.97 13.28 13.83 19.42 19.44 

6 

       
  0962_02_0.7819 PSNR=22.56 18.43 15.69 14.01 14.77 

Next, three worse cases, shown in Table 4.3, for the proposed IDCP/AGC scheme are given 

and discussed. For image 1, better visual quality is for the proposed IDCP/AGC scheme, even 

though the CAP and DNet schemes have better PSNR. It suggests that the PSNR is not 

consistent with the subjective evaluation in some cases. Similar results are found in images 2 

and 3. The dehazed images by the proposed IDCP/AGC scheme are obviously better than the 

compared schemes, even some of their PSNR are higher. The reason might be that the proposed 

IDCP/AGC scheme enhances the contrast and brightness in the dehazed images. Thus, it 

increases the mean squared error between the dehazed images and their clear images, and lower 

PSNR results. Consequently, in this study five objective assessments are employed to have a 

more fair comparison among the proposed IDCP/AGC scheme and the compared schemes. 

Table 4.3. Subjective comparison with the ITS dataset (3 chosen cases) 

No Clear Input IDCP/AGC DCP RRO CAP DNet 

1 

       
  0244_02_0.8649 PSNR=25.28 16.14 15.09 33.10 34.54 

2 

       
  0388_09_0.7129 PSNR=20.84 16.78 30.50 25.11 29.11 

3 

       
  0146_04_0.7433 PSNR=15.72 16.07 27.77 24.16 21.88 

4.1.2. Results with the OTS dataset 

To have more understanding the performance, the proposed IMDCP/AGLGC scheme is 

further justified by the OTS dataset and compared with the DCP, RRO, CAP, and DNet 

schemes. The objective comparison is given first and then the subjective comparison follows. 

A. Objective comparison with the OTS dataset 

As in the ITS dataset, five objective assessments, PSNR, SSIM, DHQI, BRISQUE, and IL-

NIQE, for the proposed IDCP/AGC scheme, DCP, RRO, CAP, and DNet are given in Table 

4.4. The DCP scheme has the second best in IL-NIQE and the third place in BRISQUE, but 

with the worst PSNR, SSIM, and DHQI. This ends up with average ranking 4. For the RRO 

scheme, it has the second best in BRISQUE, the third place in IL-NIQE, and the fourth place 

in PSNR, SSIM, and DHQI. Its average ranking is 3.4. The CAP scheme has the best SSIM 

and the second best PSNR, the third place DHQI, but the fourth place in BRISQUE and IL-

NIQE, which results in  the average ranking 2.8. For the DNet, it has the best PSNR and DHQI, 

the second best in SSIM, but the worst BRISQUE and IL-NIQE. The average ranking is 2.8. 

As for the proposed IDCP/AGC scheme, it has the best BRISQUE and IL-NIQE, the second 

best DHQI, and the third place in PSNR and SSIM. Its average ranking is 2. By the average 
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ranking, the best one is the proposed IDCP/AGC scheme, and then DNet or CAP, RRO, and 

DCP at final. By Table 4.4, it implies that the proposed IDCP/AGC scheme has more stable 

performance than the compared schemes, among the five objective assessments. 

Table 4.4. Objective comparison with the OTS dataset 

 IDCP/AGC DCP RRO CAP DNet 

PSNR 22.5973(3) 15.9340(5) 19.0970(4) 23.3067(2) 23.7265(1) 

SSIM 0.9111(3) 0.8456(5) 0.8779(4) 0.9236(1) 0.9161(2) 

DHQI 50.6845(2) 44.9371(5) 47.7001(4) 49.9232(3) 51.6284(1) 

BRISQUE 16.1972(1) 16.9098(3) 16.3732(2) 16.9410(4) 19.0443(5) 

IL-NIQE 21.2804(1) 21.3985(2) 21.4482(3) 21.4876(4) 23.1376(5) 

AR 2(1) 4(4) 3.4(3) 2.8(2) 2.8(2) 

B. Subjective comparison with the OTS dataset 

 

For subjective comparison, six images are selected from the OTS dataset, which are shown in 

Table 4.5. The six images are with different haziness. Two images (No. 1 and No. 2) are less 

hazy, two images (No. 3 and No. 4) are of moderate haziness, and two images (No. 5 and No. 

6) have more haziness. The corresponding PSNR for each image is also given in Table 7 for 

reference. In the given images, the DCP scheme has artifacts in image 2, color over-saturation 

in images 3 and 4 , and hue distortion in images 5 and 6. The RRO scheme has less dehazing 

effect in image 1, artifacts in image 2, hue distortion in images 3 and 5, and minor color over-

saturation in images 4 and 6. The CAP scheme has a dark chiffon in images 5 and 6. Similarly, 

the DNet scheme has similar, but minor, results in images 5 and 6. For the rest of images, the 

DNet generally works better than the CAP scheme, in terms of visual quality of the dehazed 

images. As for the proposed IDCP/AGC scheme, it gives better subjective results than the four 

compared schemes, even images 3, 5, and 6 have less PSNR, which is caused by brightness 

and contrast enhancement. 

Table 4.5. Subjective comparison with the OTS dataset (6 selected images) 

No Clear Input IDCP/AGC DCP RRO CAP DNet 

1 

       
  1178_0.8_0.04 PSNR=34.09 26.94 22.88 25.56 24.14 

2 

       
  0014_1_0.04 PSNR=23.21 14.52 19.62 21.63 19.14 

3 

       
  0255_1_0.1 PSNR=26.11 18.55 18.09 25.65 27.06 

4 

       
  0250_0.85_0.12 PSNR=25.72 15.90 17.88 23.07 24.06 

5 

       
  0027_0.8_0.2 PSNR=21.02 14.38 23.01 20.68 25.01 
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6 

       
  0004_0.8_0.2 PSNR=19.29 12.77 17.00 21.47 14.77 

For the OTS dataset,  three worse cases in the proposed IDCP/AGC scheme are given and 

discussed here. The three images are shown in Table 4.6, where their PSNR are given as well. 

Obviously, the visual quality of the dehazed images by the proposed IDCP/AGC scheme is 

better than the four compared schemes, even though some of PSNR are lower. For images 1 

and 2, the ground true image, i.e. clear image, is somewhat hazy, not really clear. Thus, it 

affects the PSNR calculation. In other words, the schemes have less dehazing effect, like the 

RRO, CAP, and DehazeNet, achieve better PSNR. For image 3, it is a night shot. The proposed 

IDCP/AGC scheme not only removes haze but also enhances brightness and contrast. 

Consequently, it increases the mean squared error and thus less PSNR results. It explains why 

the proposed IDCP/AGC scheme takes the third place in PSNR, as shown in Table 4.6. That 

is why this study adopts five different objective assessments and the average ranking is used 

to evaluate the overall performance for a fair comparison. 

Table 4.6. Subjective comparison with the OTS dataset (3 chosen cases) 

No Clear Input IDCP/AGC DCP RRO CAP DNet 

1 

       
  0267_0.95_0.16 PSNR=25.10 14.97 20.02 30.58 26.96 

2 

       
  0150_0.85_0.2 PSNR=16.36 16.38 16.69 32.36 19.74 

3 

       
  0113_0.85_0.12 PSNR=15.94 29.45 19.40 18.13 26.31 

4.2 Results and Comparisons with the KeDeMa dataset 

In this section, the proposed IDCP/AGC scheme is applied to the natural images, where no 

ground true images are available. In the experiments, the KeDeMa dataset, which contains 25 

natural hazy images, is employed to verify the proposed IDCP/AGC scheme further, whose 

results are compared with the DCP, RRO, CAP, and DNet schemes as previously. 

4.2.1 Objective comparison with the KeDeMa dataset 

Three objective metrics, DHQI, BRISQUE, and IL-NIQE, are calculated with the dehazed 

images obtained by the proposed IDCP/AGC and the compared schemes. Note that the full 

reference metrics, PSNR and SSIM, are not applicable, since ground true images are not 

available. For those three metrics do not require ground true images, the results are shown in 

Table 4.7. By Table 4.7, the DCP scheme ranks between 3 and 5; the RRO scheme lies within 

top three ranking; the CAP scheme takes the best in BRISQUE and the fourth place in DHQI 

and IL-NIQE; the DNet scheme has the worst ranking in BRISQUE and IL-NIQE, and the 

third place in DHQI; the proposed IDCP/AGC scheme has the best DHQI, and the second best 

both in BRISQUE and IL-NIQE. By the average ranking, the proposed IDCP/AGC scheme 

outperforms the compared schemes, and the RRO, CAP, DCP, and DNet schemes follow. 

Again, the proposed IDCP/AGC scheme provides a better and more stable performance than 

the compared schemes. 
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Table 4.7. Objective comparison with the KeDeMa dataset 

 IDCP/AGC DCP RRO CAP DNet 

DHQI 60.5390(1) 57.7240(5) 60.1320(2) 58.9870(4) 61.1010(3) 

BRISQUE 11.8990(2) 12.5420(4) 12.3470(3) 10.9520(1) 13.3190(5) 

IL-NIQE 23.9100(2) 24.6400(3) 23.5640(1) 25.6000(4) 27.7350(5) 

AR 1.7(1) 4(4) 2(2) 3(3) 4.3(5) 

4.2.2 Subjective comparison with the KeDeMa dataset 

For subjective comparison, the 25 dehazed images for the KeDeMa dataset are shown in Table 

4.8, which are obtained from the proposed IDCP/AGC scheme and the four compared 

schemes. In general, the DCP scheme suffers from the problems of color over-saturation, 

halos, and artifacts throughout the given examples. The RRO scheme has artificial contours in 

the sky region of image 1, hue distortion in image 5, color over-saturation in image 7, less 

dehazed results in images 9, 11. For the CAP scheme, it has artificial contours in the sky region 

of image 1, and less dehazed results in images 3 to 6, 8, 18 to 23. Generally, the CAP scheme 

has a relatively weak dehazing performance. The DNet scheme has artificial contours in the 

sky region of image 1, less dehazed results in images 3, 4, 6, 11, 18, 20, 21, 22, and 23. As for 

the proposed IDCP/AGC scheme, it generally gives a stable and better result than the 

compared schemes in visual quality, which is demonstrated in the aspects of naturalness, 

brightness, and contrast, as shown in Table 4.8. 

Table 4.8. Subjective comparison with the KeDeMa dataset 

No Input IDCP/AGC DCP RRO CAP DNet 

1 

      

2 

      

3 

      

4 

      

5 

      

6 

      

7 
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8 

      

9 

      

10 

      

11 

      

12 

      

13 

      

14 

      

15 

      

16 

      

17 

      

18 

      

19 

      

20 

      

21 

      

22 

      

23 
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24 

      

25 

      

 

5. CONCLUSION 

In this paper, an improved DCP (IDCP) scheme was presented to solve the four problems in 

the DCP scheme: artifacts, hue distortion, color over-saturation, and halos. The dehazed image 

by the IDCP was further enhanced by an adaptive gamma correction (AGC). The overall 

dehazing scheme is called IDCP/AGC. The proposed IDCP/AGC scheme was extensively 

justified by the synthetic hazy images in the ITS and OTS datasets, and the natural images in 

the KeDeMa dataset. Besides, the proposed IDCP/AGC scheme was compared with four 

recently reported haze removal schemes objectively and subjectively. To have a balanced 

comparison, five objective assessments, including full-reference, half-reference, and no-

reference methods, were employed. The results indicated that the objective evaluation was for 

the proposed IDCP/AGC scheme in terms of the average ranking, while the subjective 

comparison showed that the proposed IDCP/AGC scheme was relatively stable and able to 

provide a better visual quality in the given image datasets. In the future, an optimization 

algorithm will be investigated for the heuristic parameter setting in the proposed IDCP/AGC 

scheme. 
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