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Abstract: This paper investigates the matter of stability criteria for linear time delay systems with
distributed delay. Firstly, a relaxed double integral inequality is established to estimate the double
integral terms appearing within the derivative of Lyapunov-Krasovskii functionals (LKFs) with a
triple integral term. Unlike the recently introduced Jensen’s inequalities, Wirtinger based integral
inequalities, refined Jensen’s inequalities and therefore the auxiliary function based integral
inequalities the proposed relaxed integral inequality provides large feasible solution region
and fewer conservative results. Secondly, by constructing an augmented Lyapunov-Krasovskii
functional with a triple integral term, the robust stability criteria for linear time delay systems
with distributed delay are given in terms of linear matrix inequalities (LMIs), which may be easily
computed by the LMI toolbox of MATLAB. Finally, two numerical examples are performed to
indicate the effectiveness of the proposed criterion.

Keywords: robust stability, delay-dependent stability, Lyapunov functional, linear matrix
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1. INTRODUCTION

Many dynamic systems in the real world inevitably have time delays, and such delays often
cause poor performance, oscillation or even instability of the system. Consequently, the
stability issue of time-delay systems has attracted researchers for many years. The main
attention is paid to determine the admissible delay region, for which the systems remain
stable, by developing effective delay-dependent stability criteria via the Lyapunov-Krasovskii
stability theory. The issue relies on the handling of the integral terms arising within the
derivative of the Lyapunov-Krasovskii functionals (LKFs). The development of new methods
for this problem has always been a very important consideration.
So as to scale back conservatism of stability criteria, variety of techniques are presented,
including for example, Jensen’s integral inequality [1], the Wirtinger-based integral inequality
[2], the various forms of Wirtinger-based double integral inequality [3-5], Bessel-Legendre
inequality [6], auxiliary function-based integral inequalities [7,8], the free-weighting matrix
approach [4,9-11], reciprocally convex method [12,13] and free matrix based multiple
integral inequality [14]. The well-known Jensen’s inequality is often adopted because it could
lead on to a stability test with fewer matrix variables. Recently, Wirtinger integral inequality
introduced in [2] is shown more powerful than Jensen’s inequality. Later, another forms of
integral inequalities are reported in [6,7,15,16-19] to further reduce the conservatism.
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This paper presents a new relaxed double integral inequality to estimate the double
integral term within the derivative of Lyapunov-Krasovskii functionals(LKFs). A replacement
stability criterion is established by applying the newly proposed inequality which provides
less conservatism and fewer number of decision variables. To indicate the effectiveness of the
proposed criterion, two numerical examples are provided.
Notations: Throughout this paper, Rn is the n-dimensional Euclidean space and Rn×n is the
set of all n× n real matrices. X > 0(X ≥ 0) means that the matrix X is a real symmetric
positive definite matrix (positive semi definite). I denote the identity matrix with appropriate
dimensions; col {·} means a column vector. ∗ in a matrix represents the elements below the
main diagonal of a symmetric matrix. The superscript T denotes the transpose of the matrix.

2. PROBLEM FORMULATION

Consider the following system with state and distributed delays:

ẋ(t) = Ax(t) + A1x(t− h) + A2

∫ t

t−h
x(s)ds, (2.1)

x(t) = φ(t), t ∈ [−h, 0]

where, x(t) ∈Rn is the state vector, A,A1, A2 ∈Rn×n are constant matrices, h is a constant
time delay satisfying h > 0 and φ(t) is a continuous vector-valued initial condition.

2.1. Lemma[20]:
For a given matrix M > 0 , the following inequality holds for all continuously differentiable
functions x : [a, b]→ Rn:

(b− a)

∫ b

a

ẋ(s)TMẋ(s)ds ≥ ΩT
1MΩ1 + 3ΩT

2MΩ2 + 5ΩT
3MΩ3 + 7ΩT

4MΩ4

where

Ω1 = x(b)− x(a)

Ω2 = x(b) + x(a)− 2

b− a

∫ b

a

x(s)ds

Ω3 = x(b)− x(a) +
6

b− a

∫ b

a

x(s)ds− 12

(b− a)2

∫ b

a

∫ b

θ

x(s)dsdθ

Ω4 = x(b) + x(a)− 12

b− a

∫ b

a

x(s)ds+
60

(b− a)2

∫ b

a

∫ b

θ

x(s)dsdθ

− 120

(b− a)3

∫ b

a

∫ b

σ

∫ b

θ

x(s)dsdθdσ

Relaxed Double Integral Inequality

2.2. Lemma:
For symmetric positive definite matrix z ∈ Rn×n, scalars α < β, and vector φ : [α, β]→ Rn

such that the integration concerned is well defined, the following inequality holds:∫ β

α

∫ β

u

ϕT (s)Zϕ(s)dsdu ≥ 2

(β − α)2
ΩT

5ZΩ5 +
16

(β − α)2
ΩT

6ZΩ6 (2.2)
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where

Ω5 =

∫ β

α

∫ β

u

ϕ(s)dsdu

Ω6 = −
∫ β

α

∫ β

u

ϕ(s)dsdu+
3

β − α

∫ β

α

∫ β

u

∫ β

θ

ϕ(s)dsdθdu

Proof: For a function λ(s) = k1 + k2s, integration by parts, we have∫ β

α

∫ β

u

λ(s)ϕ(s) dsdu = λ(a)

∫ β

α

∫ β

u

ϕ(s) dsdu+ 2k2

∫ β

α

∫ β

u

∫ β

θ

ϕ(s)dsdθdu

By setting λ(a) = −1, 2k2 = 3
β−α , the above equality is rewritten as∫ β

α

∫ β

u

λ(s)ϕ(s) dsdu = Ω6

Then the following equality is obtained for any vector Ω0 and any matrix M > 0:∫ β

α

∫ β

u

λ(s)ΩT
0Mϕ(s) dsdu = ΩT

0MΩ6

Similarly, the following equalities are derived:∫ β

α

∫ β

u

ΩT
0Lϕ(s) dsdu = ΩT

0LΩ5∫ β

α

∫ β

u

ΩT
0LR

−1LTΩ0 dsdu =
(β − α)2

2
ΩT

0LR
−1LTΩ0∫ β

α

∫ β

u

ΩT
0LR

−1MTλ(s)Ω0 dsdu = 0∫ β

α

∫ β

u

λ2(s)ΩT
0MR−1MTλ(s)Ω0 dsdu =

(β − α)2

16
ΩT

0MR−1MTΩ0

Using the above equalities and the schur complement derives the following equality:

∫ β

α

∫ β

u

[
Ω0

λ(s)Ω0

ϕ(s)

]T [ LZ−1LT LZ−1MT L
∗ MZ−1MT M
∗ ∗ Z

][
Ω0

λ(s)Ω0

ϕ(s)

]
dsdu

=

∫ β

α

∫ β

u

ϕT (s)Rϕ(s)dsdu+ Sym
{

ΩT
0LΩ5 + ΩT

0MΩ6

}
+

(β − α)2

2
ΩT

0

{
8LZ−1LT +MZ−1MT

8

}
Ω0 ≥ 0.

where

ΩT
0 =

[
ΩT

5 ΩT
6

]
, L =

−2

(β − α)2
[Z 0]T and M =

−16

(β − α)2
[0 Z]
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that is,

ΩT
0L =

−2

(β − α)2
ΩT

5Z and ΩT
0M =

−16

(β − α)2
ΩT

6Z

which leads to (2.2).
This completes the proof.

2.3. Remark:
The proposed relaxed double integral inequality provides the tightest estimation value of the
double integral term

∫ b
a

∫ b
θ
xT (s)Zx(s)dsdθ > 0, compared with the widely used Jensen’s

integral inequality and Wirtinger-based integral inequality. Moreover, the additional positive
term 16

(β−α)2 ΩT
6ZΩ6 reduces the estimation gap. Therefore, the proposed relaxed double

integral inequality will cause less conservative than the prevailing ones within the literature.
By setting ϕ(s) = ẋ(s), the subsequent lemma are often obtained from the above lemma 2.2.

2.4. Lemma:
For symmetric positive-definite matrix Z ∈ Rn×n, scalars α < β, and vector ẋ : [α, β]→ Rn

such that the integration concerned is well defined, the following inequality holds:∫ β

α

∫ β

u

ẋT (s)Zẋ(s)dsdu ≥ 2χT1Zχ1 + 16χT2Zχ2

where

χ1 = x(β)− 1

β − α

∫ β

α

x(s)ds

χ2 =
−1

2
x(β)− 1

β − α

∫ β

α

x(s)ds+
3

(β − α)2

∫ β

α

∫ β

u

x(s)dsdu

3. MAIN RESULTS

In this section, delay dependent stability criteria for the system with distributed delays are
derived interms of LMI as follows:

3.1. Theorem:
Given h > 0, the system (2.1) is assymptotically stable if there exists positive definite
matrices P ∈ R4n×4n, Q, S, Z ∈ Rn×n, such that the following LMI holds:

Ξ = ΓPΥT + ΥPΓT + Ψ < 0 (3.3)

where

Γ = [e1 e3 e4 e5]

Υ =

[
e0 e1 − e2 he1 − e3

h2

2
e1 − e4

]
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Ψ = e1Qe
T
1 − e2QeT2 + h2e0Se

T
0 +

h2

2
e0Ze

T
0

− (e1 − e2)S(e1 − e2)T − 3

(
e1 + e2 −

2

h
e3

)
S

(
e1 + e2 −

2

h
e3

)T
− 5

(
e1 − e2 +

6

h
e3 −

12

h2
e4

)
S

(
e1 − e2 +

6

h
e3 −

12

h2
e4

)T
− 7

(
e1 + e2 −

12

h
e3 +

60

h2
e4 −

120

h3
e5

)
S

(
e1 + e2 −

12

h
e3 +

60

h2
e4 −

120

h3
e5

)T
− 2

(
e1 −

1

h
e3

)
Z

(
e1 −

1

h
e3

)T
− 16

(
−1

2
e1 −

1

h
e3 +

3

h2
e4

)
Z

(
−1

2
e1 −

1

h
e3 +

3

h2
e4

)T
e0 = Ae1 + A1e2 + A2e3

and ei ∈ R5n×n are elementary matrices, for example eT2 = [0 I 0 0 0].
Proof: Consider a Lyapunov-Krasvoskii canditate as

V (t) = V1(t) + V2(t) + V3(t) + V4(t)

where

V1(t) = ηT (t)Pη(t), V2(t) =

∫ t

t−h
xT (α)Qx(α)dα

V3(t) = h

∫ t

t−h

∫ t

β

ẋ(α)TSẋ(α)dαdβ and V4(t) =

∫ t

t−h

∫ t

β

∫ t

σ

ẋ(α)TZẋ(α)dαdσdβ.

where

η(t) = col

[
x(t),

∫ t

t−h
x(α)dα,

∫ t

t−h

∫ t

β

x(α)dαdβ,

∫ t

t−h

∫ t

β

∫ t

σ

x(α)dαdσdβ

]
The time derivative V (t) along the trajectories of system can be computed as follows:

V̇1(t) = 2ηT (t)P η̇(t) = 2ξT (t)ΓPΥT ξ(t)

V̇2(t) = xT (t)Qx(t)− xT (t− h)Qx(t− h)

V̇3(t) = h2ẋT (t)Sẋ(t)− h
∫ t

t−h
ẋ(α)TSẋ(α)dα

V̇4(t) =
h2

2
ẋT (t)Zẋ(t)−

∫ t

t−h

∫ t

β

ẋ(α)TZẋ(α)dαdβ

where

ξ(t) = col

[
x(t), x(t− h),

∫ t

t−h
x(α)dα,

∫ t

t−h

∫ t

β

x(α)dαdβ,

∫ t

t−h

∫ t

β

∫ t

σ

x(α)dαdσdβ

]
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and it can be rewritten as

V̇ (t) = ξT (t)

{
ΓPΥT + ΥPΓT + e1Qe

T
1 − e2QeT2 + h2e0Se

T
0 +

h2

2
e0Ze

T
0

}
ξ(t)

− h
∫ t

t−h
ẋ(α)TSẋ(α)dα−

∫ t

t−h

∫ t

β

ẋ(α)TZẋ(α)dαdβ.

Applying Lemma 2.1 and 2.4 to the above integrals leads to

−h
∫ t

t−h
ẋ(α)TSẋ(α)dα ≤ −ξT (t)

{
(e1 − e2)S (e1 − e2)T

+ 3

(
e1 + e2 −

2

h
e3

)
S

(
e1 + e2 −

2

h
e3

)T
+ 5

(
e1 − e2 +

6

h
e3 −

12

h2
e4

)
S

(
e1 − e2 +

6

h
e3 −

12

h2
e4

)T
+ 7

(
e1 + e2 −

12

h
e3 +

60

h2
e4 −

120

h3
e5

)
S

(
e1 + e2 −

12

h
e3 +

60

h2
e4 −

120

h3
e5

)T }
ξ(t)

−
∫ t

t−h

∫ t

β

ẋ(α)TZẋ(α)dαdβ ≤ −ξT (t)

{
2

(
e1 −

1

h
e3

)
Z

(
e1 −

1

h
e3

)T
+ 16

(
−1

2
e1 −

1

h
e3 +

3

h2
e4

)
Z

(
−1

2
e1 −

1

h
e3 +

3

h2
e4

)T }
ξ(t)

Hence, we have

V̇ (t) ≤ ξT (t)

{
ΓPΥT + ΥPΓT + Ψ

}
ξ(t)

V̇ (t) ≤ ξT (t)Ξξ(t).

This completes the proof.

4. NUMERICAL EXAMPLES

In this section, two examples are used to illustrate the effectiveness of the proposed method.

4.1. Example:
Consider the following system with distributed delay:

ẋ(t) =

[
0.2 0
0.2 0.1

]
x(t) +

[
0 0
0 0

]
x(t− h) +

[
−1 0
−1 −1

] ∫ t

t−h
x(s)ds
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The purpose is to match the utmost allowable upper bounds of h that guarantees the
asymptotic stability of the above system. Table 4.1 lists the computed maximum allowable
upper bounds and also the number of decision variables which keep the system stability
by different methods. From Table 4.1, it’s clear that the proposed approaches can provide
higher upper bounds than those within the existing results. It should be noted that our method
provides maximum allowable boundary which is adequate to the analytical bound with fewer
number of decision variables.

Table 4.1. Upper bounds on h obtained for Example 4.1

Methods Maximum h allowed NoDv
Chen and Zheng 2007 1.6339 85

Seuret and Gouaisbaut 2013 1.877 16
Park et al. 2015 1.9504 59
Zeng et al. 2015 2.0395 75

Trinch 2015 2.0395 27
Zhao et al. 2017 2.0402 45
Park et al. 2018 2.0412 42

3.1 Theorem 2.0412 39
Analytical Bound 2.0412 -

4.2. Example:
Consider the following system with distributed delay:

ẋ(t) =

[
−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(t− h) +

[
0 0
0 0

] ∫ t

t−h
x(s)ds

Table 4.2 lists the computed upper bounds by different methods and it shows that our
method provides an upper bound which is quite close to the analytical bound.

Table 4.2. Upper bounds on h obtained for Example 4.2

Methods Maximum h allowed NoDv
Zhao et al. 2017 6.1663 45
Zeng et al. 2015 6.1664 75

Gu et al. 2003 (N=3) 6.171 67
Chen et al. 2016 6.1719 106
Park et al. 2018 6.1719 42

3.1 Theorem 6.1719 39
Analytical Bound 6.1725 -

5. CONCLUSION

In this article, delay dependent stability criteria for linear time-delay system with distributed
delay are proposed by the employment of the Lyapunov method . By the development of
augmented Lyapunov functional and relaxed double integral inequality, the delay dependent
stability criterion has been proposed. Compared to the recently proposed integral inequalities
the obtained ones could provide more accurate estimations on the handling of the integral
terms arising within the derivative of the Lyapunov-Krasovskii functionals(LKFs) The
obtained stability condition provides larger feasible solution region and fewer conservatism
with fewer number of decision variables than the present ones within the literature. Two
numerical examples are presented to indicate the effectiveness of the proposed approach.
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