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Abstract: The paper considers a periodic differential inclusion with an asymptotically stable set. 

The uniform character of convergence of solutions to an asymptotically stable set is established. 

An exponential estimate is obtained for solutions of a periodic differential inclusion 

homogeneous in state vector. Examples of control systems leading to consideration of periodic 
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1. INTRODUCTION 

Studying control systems has led to the use of differential inclusions theory. Consider a 

control system          

                                                                    ),,,( uxtfx =                                                     (1.1) 

where  nRx , dtdxx /=  is the velocity vector, t  is time, and )(tuu =  is the control on 

which the next constraint is imposed 

                                                         ,)( Utu                                                         (1.2) 

U  is an arbitrary set,  nRU  . 

Under fairly general assumptions control system (1.1) with constraint (1.2) is equivalent to 

the differential inclusion 

                                                                        ),,( xtFx                                                    (1.3) 

where   ),( xtF denotes a multivalued mapping, i.e., a function that assigns a set 
nRxtF  ),(  

to each  time t  and  each point 
nRx  in the state space. Differential inclusion (1.3) can be 

adopted not only for a control system with given control constraints but also for other 

objects. For example, such objects include systems of differential inequalities, implicit 

differential equations, control systems with state-space constraints, systems with variable 

structure and with sliding modes, and differential equations with discontinuous right-hand 

sides.  

    Theory of differential inclusions is well developed and presented in systematic form in 

[1,4,17]. The use of differential inclusions in control systems theory is covered in the 

monograph [6]. The examples leading to differential inclusions are given below in Section 4.  

    In some cases, e.g., such as the problem of absolute stability, the study of linear 

nonstationary systems, the matrix of the right-hand side of which satisfies interval 



          ON UNIFORM CONVERGENCE PROPERTY OF SOLUTIONS FOR PERIODIC DIFFERENTIAL…     77 

Copyright ©2021 ASSA.                                                                                    Adv. in Systems Science and Appl. (2021) 

 

constraints, and the stability analysis of control systems that contain elements with 

incomplete information linear-selectionable differential inclusions can be used. A linear-

selectionable inclusion is an inclusion of the form 

                                   ),,( xtFx   ,)()(  ,)(:),( ttAxtAyyxtF ==                     (1.4) 

where 
nRyx  , and )(t  is a set in the space of nn  matrices. An inclusion of the form 

(1.4) is called a linear-selectionable inclusion, because the multivalued mapping ),( xtF  in 

(1.4) is the union of linear single-valued mappings (selectors) ,)( xtA  )()( ttA  . In the 

case of a time-invariant linear-selectionable inclusion, the right-hand side F  of this inclusion 

− the matrix A  and the set  − are time-invariant. A linear-selectionable inclusion is said to 

be asymptotically stable if its trivial solution 0x  is asymptotically stable.  

    Time-invariant linear-selectionable inclusions are studied in a number of publications. 

For time-invariant linear-selectionable inclusions for which the set   is a compact or convex 

polyhedron, necessary and sufficient conditions of the zero solution asymptotic stability were 

obtained in [12,13] on the base of Lyapunov functions method. The papers [7,12,13] give 

various algebraic criteria for the asymptotic stability of time-invariant linear-selectionable 

inclusions. 

    The publications on time-periodic (in short, periodic) differential inclusions (e.g., 

[2,8,9]) were mostly devoted to the existence of periodic solutions. Few investigations were 

focused on the analysis of solutions of periodic differential inclusions and their properties. 

For example, the weak asymptotical and weak exponential stability of an equilibrium of a 

periodic differential inclusion were studied in [5,18]. In accordance with the definitions 

introduced therein, an equilibrium of a given periodic differential inclusion is weakly 

asymptotically (weakly exponentially) stable if there exists at least a single solution 

satisfying the   standard definitions conditions of the asymptotical (exponential) stability for 

a differential inclusion equilibrium. The method consists in the design of a first-

approximation inclusion and further analysis of the properties of its solutions. In addition, the 

theorems of the weak asymptotical (weak exponential) stability of an equilibrium of an 

original inclusion using the corresponding properties of an equilibrium of its first 

approximation-inclusion were established. It was demonstrated that the proposed method can 

be used to study the weak asymptotical (weak exponential) stability of the inclusions 

equivalent to control systems. 

    The problems of absolute and robust stability of control systems with periodic variable 

parameters were solved in [10,11,14,15]. In particular, control systems with periodic 

parameters under consideration were proved to be equivalent to a periodic differential 

inclusion in the sense of the coincidence of the sets of absolutely continuous solutions. As 

was demonstrated in [16], in some cases solutions of periodic differential inclusions with the 

asymptotically stable trivial solution have the same properties as solutions of autonomous 

differential inclusions. 

    This paper continues the research of [16]. It considers periodic differential inclusions 

with an asymptotically stable set. The remainder of this paper is structured as follows. In 

Section 1 we consider periodic differential inclusion of general form and give preliminary 

remarks. The definition of an asymptotically stable set is also given. In Section 2 the uniform 

character of convergence of solutions to an asymptotically stable set is established. For 

solutions of periodic differential inclusion that is homogeneous in state vector we derive an 

exponential estimate. In Section 4 examples of control systems leading to the periodic 

differential inclusions are given. In the final section we offer concluding remarks.  

 

 

2. STATEMENT OF THE PROBLEM 

Consider the dynamic systems described by periodic differential inclusion  
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                       0.T   const,T  ,  0,   t),,(),(     ),,( =+ nRxxTtFxtFxtFx          (2.1) 

Everywhere below we assume that in some domain   

}},:{  ,  ,0{ 00 RxxGGxTtG RR ==  the multivalued function ),( xtF  satisfies the 

main conditions [4, p. 60]; i.e., for all Gxt ),(  the set 
nRxtF ),(  is nonempty, bounded, 

closed, and convex, and the function ),( xtF  is upper semicontinuous [4, p. 52] with respect 

to ).,( xt   

    A solution of inclusion (2.1) is understood as an absolutely continuous vector function  

)(tx  defined on an open or closed interval I  and satisfying (2.1) almost everywhere on I . 

    By virtue of periodicity of the multivalued function ),( xtF  in t , when studying the 

properties of solutions ),,( 00 xttx of inclusion (2.1), we can assume without loss of generality 

that ],0[0 Tt  . 

    By the definition of solutions and the periodicity of the right-hand side of (2.1) in  t  the 

solutions of this inclusion have two properties as follows. If a function )(tx  is a solution of 

inclusion (2.1) (for   t ), then 

    1) the function ),( kTtx +  where   kTtkT −−  and k  denotes any integer, is also a 

solution of inclusion (2.1); moreover, the solutions )(tx  and )( kTtx + have the same 

trajectory; 

    2) for any ttTt   and  ,  ],,0[ 10   such that ,10 ttt   the equality =))(,,( 11 txttx ),,( 00 xttx  

holds, where  ),,()( 0011 xttxtx = . 

    Let nRa , 
nRb  be points (vectors) with coordinates ia  and ib  respectively, ni ,1= , 

and also let 
nRB   be a set. The distance   between two points or between a point and a set 

is interpreted as the nonnegative values  

,)(),(

2/1

2

1









−=−= 

=

n

i

ii bababa     ),(inf),( baBa
Bb

= . 

As is well-known, the function ),( Bx  is uniformly continuous and for any points nRx  

and 
nRy    

)y,(),(y-),(x xBB   . 

A closed  -neighborhood M  of a set  M  is a set of such points x  that  M),(x . Let 

GM 0 


, .00   

    Definition 2.1: A set M  is asymptotically stable for  inclusion (2.1) if  for any 0  there 

exists a value  0)(   such that, for each 0x  satisfying the inequality )(),( 0  Mx , 

there exists a solution with the initial condition 00 )( xtx =  and  all solutions with the above-

mentioned property are extendable on the interval  tt0  and also satisfy the conditions 

 )),(( Mtx   for  tt0 and 0)),(( →Mtx   as →t . 

    The problem is to study solutions of inclusion (2.1) with an asymptotically stable set .M  

 

3. RESULTS 

    Theorem 3.1: If inclusion (2.1) has an asymptotically stable set ,M then there exists a 

value 00   such that all solutions  ),,( 00 xttx  of inclusion (2.1) satisfy the condition  
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                                                  0)),(( →Mtx   as  →t                                               (3.1) 

uniformly with respect to ),( 00 xt  for any ],0[0 Tt   and . 0

0


Mx   

    Proof. First, let us show that there exists a value 00   such that all solutions of inclusion 

(2.1) with  initial condition =)( 0tx ,0x  , 0

0


Mx    satisfy condition (3.1) uniformly with 

respect to 0 x  for any given ].,0[0 Tt   

    Suppose the contrary. Then for any ,0  there exists ,0)(  ],0[0 Tt  , a sequence of 

solutions )(txk  of inclusion (2.1), a numerical sequence kTttk + 0 , and a sequence of 

vectors ,...,2,1  ,0 =kxk
 such that 

Mxk 0 and  

. tas  ,...,2,1  ,0)()),,,(( k00 →= kMxttx k

kk   

    Since the set M is asymptotically stable, it follows that for any 0  we can choose a 

value  small enough to ensure that all solutions with
Mtx )( 0 satisfy the relations 

                ))),(,,(( 00 Mtxttx     ),( 0  tt 0)),(( →Mtx ).(t →                        (3.2)      

    Consequently, there exists a number 0  such that all solutions of inclusion (2.1) with 
Mtx )( 0  satisfy the inequality 

                                    )())),(,,(( 00  Mtxttx ).(   0  tt                                          (3.3) 

    Let us show that all ),,( 00

k

k xttx  satisfy the inequalities 

              , 0

Mxk  1,2,...k   ,k1,m    ,)),x,,(( k

000 ==+  MtmTtxk                       (3.4)                       

Indeed, otherwise there would exist k
~

 and  )
~

(km   ( kkm
~

)
~

(1  ) such that  

    ,)),x,,)
~

((( k
~

000~  + MtTkmtx
k

. 
~

0

Mxk   

Then the solution  

=+++=+= )),,)
~

((,)
~

(,)
~

(()),,)
~

((,,()(
~

000~0~

~

000~0

k

kk

k

k
xtTkmtxTkmtTkmtxxtTkmtxttztz  

),,)
~

((
~

00~
k

k
xtTkmtx += )(     0  tt   

of inclusion (2.1) would satisfy the relations  

=)),(( 0 Mtz     ,)),x,,)
~

((( k
~

000~  + MtTkmtx
k

),()),,,(())),,,)
~

((,,)Tk
~

(((
~

00~~

~

000~0~  =+− MxttxMxtTkmtxtmtz k

kk

k

kk
 

which contradict (3.3). 

    The sequence of segments of solutions )(txk  contains a subsequence uniformly 

convergent for 10 ttt  ; in turn, the subsequence contains a new subsequence uniformly 

convergent for 20 ttt  , and so on. Since   ),( xtF  satisfies the basic assumptions, it 

follows that the limit function  )(tx  is a solution of inclusion  (2.1) [4, p. 60], which, together 

with (3.4), implies that 
Mtx )( 0 and  + ))),(,,(( 000 MtxtkTtx , 1,2,...,k =  and we 

have arrived at a contradiction with (3.2). Therefore, the assertion started at the beginning of 

the proof of the theorem is valid. 
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    Let us now prove the assertion of Theorem 2.1. Suppose that is fails. Then for any ,0  

there exist a number ,0)(   a sequence )(txk  of solutions of inclusion (2.1), a sequence 

of numbers 
kt0  ( ],0[0 Tt k   and  kTtt k

k + 0 ), and a sequence of vectors ,...,2,1  ,0 =kxk
 such 

that      

                  
Mxk 0 ,  .  t,...;2,1  ,0)()),,,(( k00 →= kMxttx kk

kk                         (3.5) 

    Without loss of generality, we can assume that ,0   where 0  is a number for which the 

above-proved assertion holds. Since , 0

Mxk   ],0[0 Tt k  , ,...,2,1 =k  it follows that the 

sequence ,...2,1 =k  contains a subsequence ),(  }{ → kk  such that the limits 00lim xxk

k
=



→
 

(
M0x ) and 00lim tt k

k
=



→
 ( ],0[0 Tt  ) simultaneously exist. To simplify the notation, we 

assume that 
kk tt 00 =


, 

kk xx 00 =


 ,...,2,1 k == k  and 

                                                      ,lim 00 xx k

k
=

→
  .lim 00 tt k

k
=

→
                                                (3.6) 

   Let .0M),( 00 =−  x  By (3.6), there exist a 1K  such that  

                                                            2/)x,( 00  kx                                                        (3.7) 

for all 1Kk   

    Since all solutions of inclusion (2.1) are equicontinuous [2, p. 61] in any closed bounded 

domain lying in ,G  it follows that they are equicontinuous in the domain 

, { 0Mx ]},0[ Tt as well. Therefore, for the point  0t , there exist a neighbourhood 

]},,0[  ,2/:{)( 00 TtttttS −=    ],[)( 0 batS =  (  ta 0= if  00 =t and 0tb =  if Tt =0 ),  

such that   

                                                     .2/))t
~

x(,))
~

(,
~

,(( 000  txtbx                                          (3.8) 

for all solutions ))
~

(,
~

,( 00 txttx  of inclusion (2.1) with ],[
~
0 bat   and .)

~
( 0

Mtx   

    Then, taking into account relations (3.7), (3.8) and uniform continuity of the function 

),()( Mxx  =  we obtain two relations 

2/)x,(),(x-),(x),(),( 000

k

000  − kk xMMMxMx , 

2/)x),,,((),(x-)),x,t(b,(x),()),,,(( k

000

k

0

k

0

k

0k000  − kk

k

kkk

k xtbxMMMxMxtbx  

for all solutions )(txk  with .1Kk   

    Adding the last two inequalities, we obtain  

                                       0000 ),()),,,((  =+ MxMxtbx kk

k ,   .1Kk                                                  

This, together with (3.5) and (3.6), means that there exist a 2K  such that the relations   

                 ,0 Tbt k   000 )),,,((  Mxtbx kk

k , )()),,,(( 00  Mxttx kk

kk                         (3.9)   

 are simultaneously valid for all .2Kk   

    Taking into account relations  (3.9), from the sequence of solutions  )(txk  of inclusion 

(2.1) satisfying inequalities  (3.5) for 2Kk  , we pass to the sequence of solutions 

)(tyk ),,( 00

kk

k xttx=  defined by the relations  

        ),()( 0 bxyby k

k

k ==   ,),( 00  Myk
  ),()),y,,(( k

0  Mbty kk   .k →t               (3.10) 
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The existence of a sequence ),(tyk ,2Kk = ,12 +K ,...22 +K  ,(  tb  ),0 Tb   satisfying 

conditions  (3.10) contradicts the already known fact that relation (3.1) is valid uniformly 

with respect to 0x  (for 0

0


Mx  and ],0[0 Tt  ) for all solutions of inclusion (2.1). The proof 

of Theorem 3.1 is complete.   

    In what follows, we consider differential inclusions homogeneous with respect to .nRx  

If B  is a set in nR and  c  is a number, then cB  stands for a set of points of the form cx  for all 

.Bx  

    Definition 3.2: A multivalued function ),( xtF  is  homogeneous (of degree one) in x  if 

),( cxtF ),( xtcF  for all 0c . 

    Definition 3.3: A differential inclusion 

                                         )0   ),,(),((          ),(  cxtcFcxtFxtFx                         (3.11) 

is homogeneous in .x  

    Homogeneous differential inclusion (3.11) is preserved under the substitution 1cxx =  with 

arbitrary .0c  It means that if a function )(tx =  is a solution of inclusion (3.11), then the 

function )(tcx =  with arbitrary 0c  is also a solution. 

    Let us consider the differential inclusion   

),  0,(     ),,( nRxtxtFx     0),T   const,(T  ),,(),( =+ xTtFxtF  

                                                     ),0(   ),(),(  cxtcFcxtF                                            (3.12) 

periodic in t  and homogeneous in .x  Since inclusion (3.12) is homogeneous in ,x  we have 

the following assertion. 

    Corollary 3.1: If a bounded set M is asymptotically stable for inclusion (3.12), then all 

solutions ))(,,( 00 txttx  of inclusion (3.12) with the initial conditions ],0[0 Tt   and RGx 0  

(where R  is an arbitrary positive number) satisfy  condition (3.1) uniformly with respect to 

).,( 00 xt  

    For solutions of periodic homogeneous differential inclusion (3.12) with an asymptotically 

stable set M  an exponential estimate is valid.  

    Theorem 3.2: If a bounded set M is asymptotically stable for inclusion (3.12), then there 

exist numbers  0  ,0 10  cc   such that any solution ),,( 00 xttx  of  inclusion (3.12) satisfies 

the estimate  

                                    ).(t    )exp()),x,,(( 010000 − ttcxcMttx                           (3.13) 

for any   0t and  .0tt     

    Proof. By virtue of corollary 3.1, for some ,0  there exists a 0  (independent of 

),( 00 xt ) such that Tk
~

=  ( k
~

 is some positive integer) and ,2/)),x,,(( 00  Mttx  

+ t0t , for all solutions ),,( 00 xttx  with the initial condition .0 x  By virtue of 

Theorem 3 in [4, p. 62] the set of solutions of inclusion (3.12) is compact on the closed 

interval ]t,[ 00 +t  in the metric of ]t,[ 00 +tC , whence it follows that 

 200 )),x,,(( cMttx   )0( 2 c  for .t00 + tt  

    If ),,( 00 xttx  is a solution with an arbitrary 00 x  and ,/ 0xc =  then the function  

),,(),,( 0000 xttcxytty = is also a solution and ,0 =y  whence it follows that 
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2/)),y,,(( 00  Mtty  )t( 0 + t  and  200 )),y,,(( cMtty   ).t( 00 + tt  

Returning from ),,( 00 ytty  to ),,( 00 xttx , we obtain   

 
0200 )),x,,(( xcMttx   ),t( 00 + tt  2/)),x,,(( 000 xMttx   ).t( 0 + t    

(3.14) 

for any  0t and  .0x  

    Since after replacement of t  by kTt +  ( k  is an arbitrary integer), a solution of inclusion 

(3.12) remains a solution, it follows from (3.14) that a solution ),,( 00 xttx  with an arbitrary 

0x  satisfies the relations  

                                          
000 2)),x,,(( xMttx i− ),t( i  t                                     (3.15) 

where ,...2,1  ,t 0i =+= iit   

For any ,0tt   we choose an i  such that .t 1-i itt   Then itt + 0  and  ./)( 0 tti −  

Therefore, the inequality  

)/2lnexp()/2lnexp()/)(2lnexp()2lnexp(2 00  ttttii −=−−−=−
 

is fulfilled. The last inequality, together with (3.15), implies (3.13) with 

)/2lnexp( 00 tc = and ./2ln1 =c  The proof of Theorem 3.2 is complete.   

 

4. EXAPMLES 

 

    Example 4.1:  

    In the paper [13] the nonlinear control system is considered 

         ,),(
1


=

+=
m

j

jj

j tbAxx   
=

==
n

i

i

j

i

j

j xcxc
1

,,   ,,1,0),,0( mjtj =            (4.1) 

where
nn

ii Rxxx = = ,)( 1  is n -dimensional vector, characterizing the deviation of the 

system from the mode prescribed by control objective (the zero solution otx )(  of system 

(4.1) corresponds to this mode), A  is a constant square matrix of order ,n  and jb  and 

),1(  mjc j =  are constant n -dimensional vectors. The brackets .,.  denote the scalar product. 

It is also assumed that nonlinear functions ,,1),,( mjtjj =  that define the characteristics of 

nonlinear elements, satisfy conditions for the existence of an absolutely continuous solution 

of system (4.1) for any initial conditions and inequalities 

( )mjkkktk jjjjjjjjj ,1,   ),( 21

2

2

2

1 =+−   

for all j  and .0t  System (4.1) is equivalent, see the paper [13], to time-invariant 

linear-selectionable inclusion (1.4), where  is a compact set in the 2n -dimensional matrix 

space. Here and in the following examples, equivalence is understood in the sense of 

solutions sets identity for the system under consideration and the corresponding inclusion 

under the same initial conditions. 

     

    Example 4.2: 

    In the paper [10] the linear nonstationary control systems 

 

                              ,)()(
1

xtAtx k

m

k

k
=

=     0)( tk ,    1)(
1

=
=

t
m

k

k                                       (4.2)                                                                      
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are considered, where 
nт

ii Rxx = =1)(  is n -dimensional state vector of the system, 

=)(tAk   (t))(a n

1ji,

k

ij =
 are given continuous periodic matrices of the period ,0T  

=+ )( TtAk )(tAk , mk ,1= , and )(tk  ( mk ,1= ) are bounded measurable functions. 

    System (4.2) is equivalent to the periodic differential inclusion 

                                  ),,(),(          ),,( xTtFxtFxtFx +                                                                                                                                                                    

                      
==

===
m

kk

m

k

k tttAtyyxtF
1k

k

1
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        Example 4.3: In the paper [14] the linear nonstationary control system                                                          

                                                      
nRxxtAx =     ,)(                                                         (4.4) 

is considered, where n

jiij tatA 1,))(()( ==  is an arbitrary matrix ( )(taij , nji ,1, = , are measurable 

functions, generally speaking, not periodic). System (4.4) almost everywhere satisfies the 

inequalities 

                            ))(()(   ,))(((t)     (t),(t) (t) 1,1j,

n

jiij
n

nij tatAtaAAAA == ==                       (4.5) 

on any finite interval of the semi-axis ).[0,  Matrix inequalities (4.5) are understood 

elementwise, that is  ,,1,   (t),)((t) ijij njiataa ij = , where ,)(a tij  , ,1,  (t),  (t), ijij njiaa = are 

arbitrary measurable functions. It is assumed that the given bounded "extreme" matrices 

(t) A  and (t)A  are periodic with a period 0T  , i.e. conditions are valid 

(t) )( ATtA + ,   ).()( tATtA +  

Thus, by virtue of (4.5), not one fixed system (4.4) is considered, but a set of linear 

nonstationary systems (4.4) with periodic interval constraints (4.5). 

    A series of examples leading to systems (4.2) and (4.4) with constraints (4.5) were 

considered in [19]. Among such systems, note tracking systems with AC elements, control 

systems with pulse amplitude modulation and also the systems arising in the vibration 

analysis of milling machines. 

    If the condition )()( tATtA =+ is additionally satisfied, the set of linear nonstationary 

systems (4.4) with periodic interval constraints (4.5) is equivalent to the linear-selectionable 

periodic inclusion 

),,( xtFx     )()(  ,)(:),( ttAxtAyyxtF == , 

 )()()()()(  :)()( 21 tAttAttAtAt  +== , )()( tTt =+ , where arbitrary bounded and 

measurable functions 2,1),( =ktk  satisfy the conditions ,1)(  ,0)(
2

1

= 
=k

kk tt     

),()( tTt kk  =+  .0tt    

 

5. CONCLUSION  

The paper considers solutions of periodic differential inclusions with asymptotically stable 

sets. Theorem 3.1 establishes the uniform character of convergence to an asymptotically 

stable set. Homogeneous in state vector periodic differential inclusions are also considered. 

Corollary 3.1 is obtained for such inclusions. Theorem 3.2 gives the exponential estimate for 

solutions. Theorem 3.1 is a generalization of lemma 2, proved for autonomous differential 

inclusions [3]. Theorem 3.2 generalizes the estimate well known for solutions of an 

autonomous homogeneous (first degree) differential inclusion [4]. The examples of control 

systems leading to consideration of periodic differential inclusions are given.      

    The results obtained can find applications in the stability analysis of control systems with 

periodic parameters, in particular, servomechanisms whose elements operate on AC, control 
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systems with pulse amplitude modulation, and systems used to solve problems related to 

investigating vibrations of milling machines.      

    Further research into the inclusions considered in the present paper can be related to 

producing weak asymptotic and weak exponential stability conditions. In addition, it seems 

interesting to distinguish the classes of Lyapunov functions establishing necessary and 

sufficient conditions for the asymptotic stability of periodic differential and difference 

inclusions.  
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