
Adv Syst Sci Appl 2023; 04; 156-178
Published online at https://ijassa.ipu.ru.

A Novel Two-Stage Hybrid Multi-Objective Differential
Evolution with Opposition Based-Learning

Noureddine Boukhari1*, Mohamed Amine Nemmich2, Fatima Debbat3,
Nicolas Monmarché4, Mohamed Slimane4

1) Department of Mathematics, Evolutionary Engeneering & Distributed Information
Systems Laboratory (EEDIS), Djillali Liabes University of Sidi Bel-Abbes, Sidi Bel-
Abbes, Algeria

2) Department of computer science, Mathematics Laboratory, Djillali Liabes University
of Sidi Bel-Abbes, Sidi Bel-Abbes, Algeria

3) Department of Computer Science, University Mustapha Stambouli of Mascara,
Mascara, Algeria

4) Université de Tours, Laboratoire d’Informatique Fondamentale et Appliquée de Tours
(LIFAT), Tours, France

Abstract: Evolutionary algorithms have been shown to be powerful for solving multi-objective
optimization problems, where non-dominated sorting is a widely adopted selection method. In
this paper, a new two stage hybridized multi-objective evolutionary algorithm, are evolved.
Firstly, multi-objective differential evolution based on ranking mutation is applied using non-
dominated sorting and crowding distance. Secondly, jumping probability is used in second stage
in order to meet the objective of balancing the precision of the solution and the rate of
convergence while maintaining the diversity of the population by opposition-based learning
technique. Through the validation of the new approach using a suite of carefully selected test
benchmarks problems with complex Pareto sets and solve a large portfolio complex problem , it
is observed that our hybridization achieves overall better performance in terms of convergence
and diversity compared to other algorithms of literature.

Keywords: evolutionary multi-objective optimization, differential evolution, Pareto dominance,
opposition-based learning, hybrid algorithm, portfolio optimization problem

1. INTRODUCTION

Among the recent advances in optimization algorithms, evolutionary algorithms (EAs) have
proven successful in overcoming difficulties with traditional optimization techniques either
in their standard version, or hybridized [1]. EAs work with a set of solutions, called
population. This feature is particularly suitable for solving multi-objective problems, as it
enables approximating the efficient frontier in a single run. A Multi-Objective Evolutionary
Algorithm (MOEA) is a modified version of the traditional Genetic Algorithm (GA) - also
known as the simple GA, designed to solve multi-objective optimization problems (MOPs).
MOEAs have been recognized to be suitable for solving multi-objective optimization
problems because of their ability to find good solutions for competing objective functions
simultaneously and to search for multiple non-dominated solutions simultaneously in the
population of candidate solutions. This capability enables them to find several trade-off
solutions for all objectives in a single run of the algorithm, instead of having to perform a
series of separate runs as in the case of the traditional techniques such as weighted sum, goal
programming and weighted min-max methods. Ideally, a MOEA returns a Pareto-optimal

* Corresponding author: boukhari.noureddine@gmail.com

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 157

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

set, the solutions not dominated by any other solution in the search space. In addition,
MOEAs are less susceptible to the shape or continuity of the Pareto-optimal front, whereas
these two issues pose a problem for the mentioned traditional techniques.

In the past two decades , multi-objectives optimization has attracted increasing interests
in the evolutionary computation community, and a large number of multi-objective
optimization algorithms have been developed on the basis of different population based
meta-heuristics, such as genetic algorithm [2], differential evolution algorithm [3], firefly
algorithm [4], particle swarm optimization algorithm [5], SMS-EMOA[6]. Although various
approaches have been adopted for selection [7], most MOEAs adopt the Pareto-based
approach, i.e., the qualities of the candidate solutions are compared using Pareto dominance.
Among various dominance comparison mechanisms, non-dominated sorting has been shown
to be very effective for finding Pareto-optimal solutions. Much work has also been done to
efficiently store non dominated solutions found during search in an archive. Non-dominated
sorting is a procedure where solutions in the population are assigned to different fronts based
on their dominance relationships.

Differential Evolution (DE) is a simple and efficient population-based EA that has been
reported in several studies for its high robustness, fast convergence speed, and good solution
quality, making it a very popular EA in the evolutionary computing community. Due to these
strengths observed in DE, the use of this EA may provide an answer to some, but not all, of
the above limitations. In order to overcome these limitations, several improvement works
were carried out on DE in order to allow it to meet the objective of balancing the precision of
the solution and the rate of convergence while maintaining the diversity of the population for
different types of MOOP. In order to simultaneously achieve fast convergence speed and
efficient global search capacity, researchers explored the use of hybridization of different
EAs for MOOPs as well as the formulation of memory algorithms that integrate local search
into EAs, and these efforts can also be found in DE [8][9]. Researchers have also introduced
the use of adaptive or self-adaptive DE variants [10][11] which eliminate the need to
undergo the tedious process of trial and error setting the control parameters in DE to an
optimum setting for the problems tested.

Differential evolution as one of the most evolutionary algorithms, has been widely
applied to solve multi-objective optimization problems due to its simple implementation and
fast convergence. In order to apply DE to multi-objective optimization, there are at least two
fundamental issues to be addressed. The first issue is how to define the best individual, given
that there does not exist any individual which can perform the best on all objectives of an
MOP. The second issue is how to balance convergence and diversity of the population. Since
the target of multi-objective optimization is to obtain a set of trade-off solutions, diversity
maintenance is particularly important. A DE based multi-objective algorithm is very likely to
be trapped in local optimum (or one of the many optima) of an MOP due to its fast
convergence. There-fore, striking a balance between convergence and diversity is crucial to
the performance of multi-objective DE algorithm.

2. DIFFERENTIAL EVOLUTION FOR MOP

Several researchers have applied DE to solve multi-objective problems [12], with superior
and impressive performance to other multi-objective algorithms in benchmarks and widely
practical applications. Reported and verified [13][14], the general DEMO procedure is
shown in Algorithm 1. Like DE, the algorithm starts with a population P randomly created
solutions. For each generation, the following steps are repeated. A candidate is constructed
from its parent (and other solutions of P) using the DE/rand/1/bin strategy described
previously. After that, the candidate is assessed and compared to his parent. At this point,
DEMO differs from DE (see step 2.1 (c) in Algorithms 1). In DEMO, the candidate replaces
the parent only if he dominates him. If the parent dominates the candidate, the candidate is

158 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

discarded. Otherwise (when the candidate and the parent are incomparable), the candidate is
added to the population. After repeating this step p times, we obtain a population of size
between p and 2p. If the population has grown in size, it should be truncated to size p using
one of the environmental selection approaches. At the end of the generation, the solutions of
P are listed at random (as in DE). The end result of DEMO consists of non-dominated
solutions of P.

General MODE algorithm 1 [15]
Input: parameters of the algorithm.
Output: Non-dominated solutions of P.
1. Evaluate the initial population P of p random solutions.
2. While the stop criterion has not been met, proceed as follows:

2.1. For each solution 𝑥௜ (𝑖 = 1, … , 𝑝) of P repeat:
(a) Create candidate c from parent 𝑥௜
(b) Calculate the candidate's goals.
(c) If the candidate dominates the parent, the candidate replaces the parent.
If the parent dominates the candidate, the candidate is discarded. Otherwise,
the candidate is added to the population.

2.2. If the population has more p solutions, apply an environment
Selection procedure to obtain the best solutions P.

2.3. Randomly list the solutions in P.

Note that newly created candidates who enter the population (either by replacement or by
addition) instantly participate in the creation of subsequent candidates. This makes it possible
to achieve rapid convergence towards the optimal Pareto front.

The extension of DE to MOPs has also given promising results [16]. In what follows, we
will review the multi-objective DE (MODE) under five aspects, namely adaptive strategies,
selection operator, diversity control, constraint management and practical applications.

For adaptive mutation type and MODE parameterization strategies, [17] have proposed a
self-adaptive MODE (MOSaDE) capable of adaptively selecting the appropriate mutation
strategies. Later, a new version of the MOSaDE hybrid with learning strategies by objectives
(OWMOSaDE) was developed by [18], who can adaptively select mutation strategies and
crossing parameters appropriate for each objective separately. [3] presented a self-adapting
MODE in which direction information from solutions archived below the current population
is used in the mutation process. [19] used information from the evolution of solutions along
each search direction to tailor MODE control parameters. [20] proposed a variant of
MOEA/D with DE operators (MOEA/DFRRMAB) where rates of mutation operators were
adaptively determined by a multi-armed bandit scheme.

For the selection operator in MODE, traditional modes [18], and Pareto differential
evolution [21] used the one-to-one selection scheme. one, that is, the test vector was allowed
into the next generation if and only if it could dominate its target solution. Different from this
scheme, some MODEs preferred to store the new test vectors and then select good solutions
from the union of test vectors and the original population to build the next population. The
application of such a scheme is found in the MODE named PDEA proposed by [22], DEMO
proposed by (Robič & Filipič, 2005), ADEMO proposed by [23], MODEA proposed by [24],
and the DEMON proposed by [25].

Regarding the diversity control in MODE, many studies have preferred to adopt the
Pareto ranking and the overpopulation distance of NSGA-II [26] to truncate the elitist
archive. Instead of crowding distance, [27] used a measure of diversity entropy of crowding
in the self-adaptive MODE to preserve the diversity of elite archives. [28] developed a
measure of diversity based on harmonic distance to maintain the diversity of external
archives and dominance has been integrated into MODE to ensure the diversity of external
archives. In addition to metrics for measuring diversity, the multiple populations strategy has
also been adopted in MODE to maintain diversity. A cooperative MODE (CMODE) with
multiple populations has been presented by [29], in which each population treated only one

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 159

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

goal. Another version of the multi-population mode has been proposed in [30], in which each
subpopulation adopted its own mutation strategy and competed for evolutionary resources.

For the MOP with constraints, [31] incorporated local research based on approximate set
theory into MODE. [32] developed a new MODE by designing a new constraint
management method to guide the search for individuals using a number of good infeasible
solutions.

For the practical application of the MODE, [33] presented a MODE for the optimization
of the operation of the pyrolysis of naphtha. [34] presented a MODE incorporating a taboo
list for chemical engineering applications. [35] Studied the optimization of the functioning of
the p-xylene oxidation reaction process and developed a MODE with a self-adaptive strategy
for the generation of test vectors and the control of settings. [36] proposed a MODE with an
adaptive parameter control strategy and non-dominated ranking for POM of electromagnetic
problems. [37] proposed an adaptive MODE for the problem of defining the operating point
with four objectives focusing on the cost of fuel consumption and reduction of emissions.

The work [38] proposed a DE variant to solve multi-objective optimization problems
called MyODEMR (Multiple-objective DE with mutation restriction). The algorithm uses the
concept of Pareto dominance coupled with the inverted generational distance metric to select
the population for the next generation from a combination of the parent and offspring
populations. The algorithm also uses a strategy of restriction of the difference vector in the
DE mutation to improve the convergence characteristics on multimodal fitness landscapes.
Recently, [39] proposed a multi-goal optimization algorithm that periodically rearranges
goals based on their conflict status and selects a subset of conflicting goals for further
processing. The authors used DEMO as the underlying metaheuristic algorithm, and
implemented the technique of selecting a subset of conflicting goals using an order based on
the correlation of goals. The resulting method is called α-DEMO, where α is a parameter
determining the number of conflicting objectives to select. DE has also been used as a core
optimizer in recently developed decomposition-based MOEAs for multi-objective
optimization such as [40].

3. OPPOSITION BASED LEARNING

Opposition based learning (OBL) is a new concept of machine learning, inspired by the
opposing relationship between entities. In 2005, for the first time, the concept of opposition
was introduced, which has attracted a lot of research efforts over the past decade. A variety
of soft computer algorithms such as optimization methods, reinforcement learning, artificial
neural networks, and fuzzy systems have already used the concept of OBL to improve their
performance. The concept of computational opposition [41] was inspired by the concept of
opposition in the real world and opposing numbers were simply defined as follows:

Definition 3.1: (opposite number). [41] Let 𝒙 ∈ [𝒂, 𝒃] be a real number. Its opposite,
x


, is defined as follows:
𝑥෬ = 𝑎 + 𝑏 − 𝑥 (3.1)

Definition 3.1: (opposite point in space D). [41] Let 𝑥 (𝑥ଵ, . . . , 𝑥஽) be a point in
dimensional space 𝐷 and 𝑥௜ ∈ [𝑎௜, 𝑏௜], 𝑖 = 1, 2, . . . , 𝐷. The opposite of 𝑥 is defined by x



(𝑥෬௜,..., 𝑥෬஽) as follows:
𝑥෬௜ = 𝑎௜ + 𝑏௜ − 𝑥௜ (3.2)

In fact, they indicate that to find the unknown optimal solution, the simultaneous search
for a random direction and its opposite gives a higher chance of finding the promising
regions. It is reasonable that if the current estimates (assume) are far from the unknown
optimal solution, the computation of their opposites leads in the opposite direction to the
unknown optimal solution. Note that the base opposite point is calculated the same as a
reflected point when it is calculated through the center point ((𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥஽)/2).

160 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

OBL was introduced as an attempt to increase the rate of learning in EAs. Since evolution
is a slow process while revolution is a fast process, the simulation of revolution in EAs might
speed up their convergence. It has also been implemented in many other optimization
algorithms as mentioned in section 01. Several research works have been conducted in
utilizing OBL concept and extending the new schemes of OBL to enhance EA algorithms.
Also, mathematical theorems were derived to demonstrate that opposite candidate solutions
have higher probability to be closer to an unknown optimal solution than the randomly
generated candidate solutions.

In [42], some theorems are mathematically proved to conclude the advantage of using the
OBL concept. Also, they conducted some experiments by utilizing the OBL concept in the
framework of EA algorithms to enhance their performance.

In fact, according to probability theory, 50% of the time, a guess is further from the
solution than its opposite guess. Therefore, it will generate the opposite individual of the
current individual, evaluate the fitness of both individuals, and select the better one as a new
individual which can consequently improve the quality of the search population and
accelerate convergence.

The motivation for this work was twofold. First, we wanted to design an efficient
algorithm for multi-objective optimization, which would use DE for decision space
exploration in a simple way. Although DE-based algorithms for multi-objective optimization
have already been proposed in the past, they have either ignored the basic feature of DE of
comparing each new solution. to its parent, or applied it too strictly for multi-objective
optimization. In addition, the existing approaches only use the environmental selection
method of NSGA-II, while our objective was to allow combinations of exploration of the
decision space to boost the algorithm to select better solutions with a good diversity
compared to the algorithms proposed in the literature. The second objective is to apply an
efficient hybridization of the DE-based multi-objective optimization algorithm with other
training technique in order to reduce the complexity of the compute and that the results are
precise and simple. Our hybrid approach could help by exploring space.

4. PROPOSED HYBRID ALGORITHM MODE-OBL

This section describes the multi-objective differential evolution based on the opposition
MODE-OBL developed in this study on the basis of the MODE-RMO algorithm [43] (see
algorithm 2). In MODE-OBL, the candidate potential solutions are processed at initialization
and the exploration/exploitation capacities during the various optimization processes are
mainly concerned. OBL can be used in two steps of MODE-OBL. First, at the initialization
stage in order to arrive at candidate solutions for the most appropriate fit under conditions
where there is no a priori knowledge about the initial individuals; Second, during the
implementation of MODE-OBL in order to force the current population to embark on new
candidate solutions more suitable than current ones. These two steps are called, respectively,
opposition-based population initialization and opposition-based generation leap. In this way,
the proposed algorithm can converge faster while maintaining good diversity. Figure 4.2
shows the overall operational architecture of the proposed algorithm. The majority of works
have used OBL in the context of mono-objective optimization and recently very few attempts
are invested to hybridize OBL with multi-objective evolutionary algorithms [44] [45]. Hence
our approach is inspired to incorporate a two-phase (serial) learning technique into multi-
objective differential evolution based ranking mutation.

4.1. Multi-Objective Differential Evolution with Ranking-Based Mutation Operator

In this section, the proposed MODE-RMO algorithm is presented in detail. In MODE-RMO,
the ranking-based mutation operator is introduced in MODE to improve its performance by
accelerating the speed of convergence. Therefore, in the next part, we will first describe the

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 161

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

ranking-based mutation operator for multi-objective optimization; then MODE-RMO is
minutely elucidated.

In nature, good people always hold good information, and they are more likely to be used
to guide other people. Based on these considerations, [46] proposed a ranking-based
mutation operator for DE in single-objective optimization, in which parents are selected
proportionally based on their ranking in the current population. The higher a parent ranks,
the more they will be selected. The authors incorporated the proposed rank-based mutation
operator in some DE algorithms, and experimental results indicated that the rank-based
mutation operator is able to improve the performance of DE algorithms in the optimization
of one goal. The ranking-based mutation operator was introduced in MODE for MOP.
However, the challenge of this extension is that the population can be directly sorted from
best to worst in single objective optimization, while there are many solutions that are not
dominated among themselves in multi-objective optimization. Whereas the MODE algorithm
should generate approximate Pareto solutions with both good convergence and good
propagation, therefore, non-dominated fast sort and saturation distance are incorporated into
the rank-based mutation operator to treat MOPs.
4.1.1. Fast sorting not dominated and crowding distance

The unexpressed rapid sorting and crowding distance is proposed by [47] in the NSGA-II
algorithm. In the quick sort procedure without markup, for each solution, two entities are
calculated:
1) 𝑛௣ : the dominance account, i.e. the number of solutions which dominate the solution 𝑝;
2) 𝑆௣ : a set of solutions that the solution dominates. All solutions of the first non-dominated

front will have their dominance count at zero. Now, for each solution 𝑝 with 𝑛௣ = 0, we
visit each member (𝑞) of its set 𝑆௣ and reduce its domination count by 1. If for a member
the domination count becomes zero, we put it in a separate list 𝑄, these members belong
to the second non-dominated front. Now the above procedure continues with each limb
and the third front is identified. This process continues until all fronts are identified.
The crowding distance is used to get an estimate of the density of solutions surrounding a
particular individual 𝑖 in the population; it calculates the average distance of its two
neighboring solutions on along each of the goals. The computation of the gathering
distance requires sorting the population according to each objective function value in an
increasing order of magnitude. Then, for each objective function, the boundary solutions
(solutions with the smallest and largest function values) are assigned an infinite distance
value. All other intermediate solutions are assigned a distance value equal to the absolute
normalized difference of the function values of two adjacent solutions. This calculation is
continued with other objective functions. The overall staging distance value is calculated
as the sum of the individual distance values corresponding to each goal. Each objective
function is normalized before calculating the crowding distance.

4.1.2. Ranking assignment and probability of selection

After obtaining the number of non-naming fronts 𝑖௙௥௢௡௧ and the gathering distance 𝑖௖ௗ for
each solution 𝑖, we can define a partial order for the whole population. Solution 𝑖 is better
than solution 𝑗, if one of the two conditions is met:
(𝑖) 𝑖௙௥௢௡௧ < 𝑗௙௥௢௡௧;
(𝑖𝑖) 𝑖௙௥௢௡௧ = 𝑗௙௥௢௡௧ 𝑎𝑛𝑑 𝑖௖ௗ > 𝑗௖ௗ

Now the population can be sorted in ascending order based on the partial order defined
above. An individual's ranking is assigned as follows:

𝑅௜ = 𝑁௣ − 1, 𝑖 = 1,2, … , 𝑁௣ (4.1)
where 𝑁௣ is the size of the population.

162 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

According to the equation. (4.1), the best individual in the current population will obtain
the highest rank. After assigning the ranking for each individual, the selection probability 𝑃௜

of the
thi individual is calculated as follows:

𝑃௜ =
𝑅௜

𝑁௣
, 𝑖 = 1,2, … , 𝑁௣ (4.2)

After calculating the probability of selecting each individual by the equation. (4.2), the
mutation operator based on the ranking of DE/rand/1 for multi-objective optimization can be
presented in step 5 on Algorithm 2, where the individual with a higher ranking will have a
greater probability of being selected as the base vector or the terminal vector in the mutation
operator; hence, it is beneficial for the propagation of good information in the population to
the offspring. In the ranking-based mutation operator for multi-objective optimization, only
the base vector and the terminal vector are selected based on their selection probabilities,
while the start vector is selected randomly. Indeed, if the two vectors of the difference vector
are both chosen from among better vectors, the search step size of the difference vector can
decrease rapidly and lead to premature convergence [48].
4.1.3. Selection operator

In MODE, the crossover is performed in the same way as in single objective optimization.
However, the selection needs to be rethought, as the test vector and the target vector are
often non-dominated over each other. In MODE-RMO, we use the following selection
operator, which has three steps:

(1) If the test vector dominates the target vector, use the test vector to replace the target
vector.

(2) If the target vector dominates the test vector, the test vector is discarded.
(3) Otherwise, the test vector is added to the population.
Thus, at the end of a generation, the total population size is between NP and 2NP. This

population is truncated for the next step of the algorithm. The truncation process involves
sorting and rating individuals on the same front with the crowding distance. The truncation
procedure retains only the best NP vectors in the population.

Algorithm 2 general procedure of MODE-RMO
Step 1: define the number of generations 𝒈 = 𝟎,

Randomly initialize the population 𝑷𝒈 = {𝒙𝟏
𝒈

, 𝒙𝟐
𝒈

, … , 𝒙𝑵𝒑
𝒈

}
with 𝒙𝒊

𝒈
 = {𝒙𝒊𝟏

𝒈
, 𝒙𝒊𝟐

𝒈
, … , 𝒙𝒊𝑫

𝒈
} (𝒊 = 𝟏, … , 𝑵𝒑) uniformly distributed in the search space

Define the mutation scale factor F, the crossbreeding constant CR and the
maximum number of Maxgen generations.

Step 2: evaluate the fitness value of each target vector 𝒙𝒊
𝒈.

Step 3: For each individual vector, perform the following steps from step 4 to step 7.
Step 4: determine the vector indices selected using the method described in 4.1.2
Step 5: Use the ranking-based mutation operator to generate a vector 𝒎𝒊

𝒈 ା 𝟏 corresponding to
the target vector 𝒙𝒊

𝒈 according to equation (5).
Step 6: Use the crossover operation to generate a test vector 𝒗𝒊

𝒈ା𝟏 for each target vector 𝒙𝒊
𝒈

according to equation (6).
Step 7: Evaluate the test vector and use the following selection operation:

(i) if 𝒗𝒊
𝒈ା𝟏

 dominates 𝒙𝒊
𝒈

, 𝒙𝒊
𝒈ା𝟏

 = 𝒗𝒊
𝒈ା𝟏.

(ii) if 𝒙𝒊
𝒈 dominates 𝒗𝒊

𝐠ା𝟏, 𝒗𝒊
𝐠ା𝟏 is rejected.

(iii) if 𝒙𝒊
𝒈 and 𝒗𝒊

𝐠ା𝟏 are not dominated with each other, add 𝒗𝒊
𝐠ା𝟏 to the population.

Step 8: After step 7, the size of the population varies from Np to 2Np.
Sorting population based on non-dominated sorting and crowding distance, and
best individual 𝑵𝒑 survive the next generation.

Step 9: Set g = g + 1, go back to step 3 until the 𝑴𝒂𝒙𝒈𝒆𝒏 be reached.

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 163

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

4.2. Initialization based on opposition learning

Random initialization, in the absence of a priori knowledge, reduces the chances of sampling
better regions in population-based algorithms. However, the use of OBL can obtain more
suitable starting candidates even in the absence of a priori knowledge and increase the
probability of detecting better regions. OBL is an effective mechanism in the field of
optimization because of the promising potential to improve the performance of various
optimization algorithms, including KH [49], DE [50] and PSO [51].

The Optimization based on the opposition: Let 𝑃 (𝑥ଵ, 𝑥ଶ, . . . , 𝑥஽), a point in a space of
dimensions 𝐷 with 𝑥௜ ∈ [𝑎௜, 𝑏௜] (𝑖 = 1, 2, . . . , 𝐷), or a candidate solution. Suppose 𝑓 (𝑥) is
a fitness function used to measure candidate optimality. According to the definition of the
opposite point, 𝑃෰ (𝑥෬ଵ, 𝑥෬ଶ, . . . , 𝑥෬஽) is the opposite of 𝑃 (𝑥ଵ, 𝑥ଶ, . . . , 𝑥஽). If 𝑓 (𝑃෰) is better
than 𝑓 (𝑃), then point 𝑃 can be replaced by 𝑃෰; otherwise, we continue with 𝑃. Therefore, the
point and its opposite point are evaluated simultaneously to continue with the adjuster [52].
Inspired by the idea of [49], we conduct here a new method for initializing MODE with
OBL, which is different from the survival selection in previous OBL-based algorithms
(including OBL strategies choose the best 𝑁௣ individuals among the original 𝑁௣ individuals
and the opposite 𝑁௣ individuals in initialization). The main steps to explain this procedure
are given as shown in Figure 4.1:

Step 1: Divide the population 𝑃 (𝑁௣) into two parts, the first half of the population 𝑃ଵ is
generated by a random distribution.
Step 2: The remaining half of the population 𝑃ଶ is initialized in terms of OBLs, as shown
in section 4.2:

𝑃ଶ = 𝑎௜ + 𝑏௜ − 𝑃ଵ, (4.3)
where (𝑖 = 1, 2, . . . , 𝐷)

Step 3: The set 𝑃ଵ ∪ 𝑃ଶ is restructured as the initial population 𝑁௣.

Fig 4.1. OBL-based initialization strategy in MODE

The OBL strategy used in our proposed algorithm is different from the traditional OBL
based algorithm. Regarding initialization, the traditional OBL strategy first initializes the
population at random, then calculates the opposite population. While the OBL operation in
our proposed algorithm first divides the population into two parts, then randomly generates
and calculates the inverse respectively, which can obtain more suitable starting candidates
when there is no a priori knowledge of the solution. Also, after the above steps in generation
and opposite calculation, the two subpopulations are made up of one population, which can

164 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

make the population size unchanged in the optimization process and help the algorithm to
operate efficiently.

As for the use of OBL in the evolutionary phase, traditional OBL-based algorithms can
apply the OBL in the evolutionary phase with a jump rate or a jump probability. However,
the proposed MODE OBL directly calculates the opposite without the jump rate, which can
increase the likelihood of effectively detecting better regions and reduce complex setting,
especially for the real-world problem. This strategy is used to accelerate convergence when
there is no prior knowledge of solutions, thus achieving better solutions more quickly.

4.3. Jumping Generation based on opposition

In order to improve overall convergence and avoid sub-optimal solutions, the OBL technique
is reapplied to the current population. At this point, if the jump condition is satisfied:
𝑗௥

𝑟𝑎𝑛𝑑() ≤ − ቀ
௚

௚೘ೌೣ
ቁ

ଶ

+ 2 ቀ
௚

௚೘ೌೣ
ቁ , (4.4)

where 𝐺𝑒𝑛 and 𝐺௠௔௫ are the current and maximum generations respectively [45]. The
corresponding opposition population is calculated by forcing current one to pass to a new
solution. After that, the fittest 𝑁௣ individuals are selected from the combined population of
the current population and the opposition as the current population for the next generation.
Unlike the process of the opposition-based initialization phase, the generation jump
computes the opposition population dynamically. Instead of using the predefined interval
limits of the variables [𝐿𝐵௝ , 𝑈𝐵௝], the generation jump calculates the opposite of each
variable based on the minimum values 𝑀𝑖𝑛௝

௣ and maximum 𝑀𝑎𝑥௝
௉ for this variable in the

current population.
𝑋௜,௝

଴,௖௨௥௥௘௡௧ = 𝑀𝑖𝑛௝
௣

+ 𝑀𝑎𝑥௝
௉ − 𝑥௜,௝

௖௨௥௥௘௡௧, 𝑤ℎ𝑒𝑟𝑒 ൫𝑗 = 1, … , 𝐷; 𝑖 = 1, … , 𝑁௣൯ (4.5)
By remaining within the static limits of the interval of variables, we jump outside the

already reduced search space and lose knowledge of the current reduced space (converged
population). Therefore, we calculate opposite points using the current range of variables in
the population which is, as we search, smaller and smaller than the corresponding initial
range.

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 165

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

Fig 4.2. Flowchart of the proposed hybrid algorithm MODE-OBL

5. EXPERIMENTAL RESULTS AND COMPARISONS

Five state-of-the-art algorithms, namely NSGA-II, MOPSO, NSDE, MOEA/D-DE and
MODE-RMO were chosen for the performance comparison with the proposed MODE-OBL.
NSGA-II [53] is a popular algorithm in evolutionary multi-objective optimization because it
has the ability to achieve promising solutions for most MOOPs. This algorithm uses Pareto
rank and crowding distance as the operators of fitness assignment, binary tournament
selection, uniform crossover, bit-flip mutation, and parent-offspring archiving. The Non-
Dominated Sorting Differential Evolution (NSDE) [54] is an extension of the Basic
Differential Evolution solving multi-objective optimization. It adopts the non-dominated
sorting, ranking, and elitism techniques found in NSGA-II, but the main difference between
them is that the NSDE uses the differential evolution mutation operator instead of the SBX
operator. For MOEA/D-DE [55], it is an evolutionary algorithm that decomposes any given
MOP into a number of single objective subproblems. Each subproblem is simultaneously
optimized during the evolutionary research process. For the decomposition of MOOP,
Tchebycheff's approach is used in this algorithm and the difference between MOEA/D-SBX
and MOEA/D-DE lies in their genetic operators whereby the SBX crossover operator is used
with a polynomial mutation. for MOEA/D-SBX while MOEA/D-DE uses the DE/rand/1
crossover with polynomial mutation. Finally, for MOPSO [56], it is extended from the
particle swarm optimization algorithm (PSO), and it essentially combines the strong
characteristics of PSO. For fair comparisons, all parameters of the compared algorithms are
set to recommended values as in their original articles.

166 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

In the following subsections, the test issues and quality indicators used in our
comparative experiments are first presented. Then, the experimental parameters adopted in
this study are provided. In addition, thirty independent tests are performed for each test
problem in order to avoid the stochastic phenomenon, and the Wilcoxon rank sum test is
adopted with significance level of 0.05 to compare the results obtained by MODE-OBL and
the five algorithms compared to determine if the best performing algorithm differs from
competitors results in a statistically significant way. Where the symbols "+", "-" and "≈"
indicate that the result is significantly better, significantly worse and statistically similar to
that obtained by the MODE-OBL, respectively.

5.1. Test problems

A total of 12 benchmark test problems were chosen to test the optimization performance of
the proposed hybrid algorithm MODE-OBL in terms of convergence towards the true Pareto
front as well as the ability to maintain a set various solution. The test issues used included
ZDT and DTLZ issues. For test problems, they can have two, three or five objective
functions and have an evolving number of decision variables. These problems have been
chosen because they cover different characteristics of multi-objective optimization, namely
the convex Pareto front, the non-convex Pareto front, the discrete Pareto front,
multimodality, and non-uniformity of the distribution of solutions. The presence of these
characteristics may pose challenges to a multi-objective optimization algorithm.

Table 5.1. Multi-objective testing issues. S (scalability), M (the number of objective functions), K (scalar
parameter), N (the number of decision variables), SP (separable), NS (non-separable).

Instance M N Interval Geometry SP/NS U/M
ZDT1 2 30(S) [0,1]௡ Convex SP U
ZDT2 2 30(S) [0,1]௡ Concave SP U
ZDT3 2 30(S) [0,1]௡ Deconnected SP M
ZDT4 2 30(S) [0,1]௡ × [−5,5]௡ିଵ Convex SP M
ZDT6 2 30(S) [0,1]௡ Concave SP M

DTLZ1 3(S) 𝒎 + 𝑲 − 1(𝑆) [0,1]௡ Lineair SP M
DTLZ2 3(S) 𝒎 + 𝑲 − 1(𝑆) [0,1]௡ Concave SP U
DTLZ3 3(S) 𝒎 + 𝑲 − 1(𝑆) [0,1]௡ Concave SP M
DTLZ4 3(S) 𝒎 + 𝑲 − 1(𝑆) [0,1]௡ Concave SP U
DTLZ5 3(S) 𝒎 + 𝑲 − 1(𝑆) [0,1]௡ Degenerated NS U
DTLZ6 3(S) 𝒎 + 𝑲 − 1(𝑆) [0,1]௡ Degenerated NS U
DTLZ7 3(S) 𝒎 + 𝑲 − 1(𝑆) [0,1]௡ Deconnected SP M

5.2. Performance indicators

In our experimental study, in order to make a fair comparison of the different optimization
algorithms, performance measures relevant and applicable to the optimization objectives of
convergence and distribution must be used. Two widely used measures are chosen to
evaluate the performance of each algorithm, which are called the generational distance [57],
and the inverted generational distance (IGD) [58]. GD and IGD can effectively measure the
convergence and diversity of the obtained solutions, respectively. Convergence describes the
degree of approximation of the result obtained by the algorithm to the true Pareto front (PF).
The stronger the convergence of the algorithm, the closer the set of solutions is to the true
optimal solution and the more precise the result. The distribution describes the distribution
characteristics of the result obtained in the objective space. On the one hand, the results
should be distributed as much as possible over the entire PF, and on the other hand, the
results should be distributed as evenly as possible. The stronger the distribution of the
algorithm, the better the overall exploration capacity of the algorithm.
5.2.1. Generational distance (GD)

Generational distance (GD) is a unary performance indicator that is defined as:

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 167

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

𝐺𝐷 = ඨ
෌ 𝑑(𝑃௜

∗, 𝑃)௜
ଶே

௜ୀଵ

𝑁
 , (5.1)

where 𝑁 is the number of solutions in 𝑃𝐹∗, 𝑝 ∈ 𝑃𝐹, 𝑝∗ ∈ 𝑃𝐹∗ and 𝑑(𝑝∗, 𝑝)௜ the minimum
Euclidean distance in the objective space between 𝑝∗ and 𝑝 for each member 𝑖. GD
illustrates the convergence capacity of the algorithm by measuring the convergence between
the optimal Pareto front and the evolved Pareto front. Thus, a lower value of GD shows that
the evolved Pareto front is closer to the optimal Pareto front. This indicator is a
representative metric that provides a quantitative measure of the multi-objective optimization
convergence goal.
5.1.2. Inverted generational distance (IGD):

IGD is a unary indicator by which the distance of each solution in the optimal Pareto front to
the obtained Pareto front is calculated. Let *P be a set of solutions uniformly distributed in
objective space along the Pareto front. P is an approximation of the PF, which is obtained
by the algorithm. IGD is described as:

𝐼𝐺𝐷(𝑃, 𝑃∗) =
෌ 𝑑𝑖𝑠𝑡(𝑃௜

∗, 𝑃)
௜ୀଵ

|௉∗|

|𝑃∗|
 , (5.2)

where dist(𝑃௜
∗, 𝑃) is the Euclidean distance between a point 𝑥∗ ∈ 𝑃∗ and its nearest neighbor

in 𝑃, and |𝑃∗| is the cardinality of 𝑃∗. We can see from the definition of IGD that for a large
|𝑃∗|, it can cover approximately the entire Pareto front, which is another aspect of the metric
in terms of diversity.

5.3. Results

For the other algorithms compared, their parameter settings used in this study followed those
used in their original studies. The experimental settings and overall parameters are
summarized in Table 5.2. The comparison was made to examine their optimization
performance in the test problems described above. All algorithms were implemented in
MATLAB and run on an Intel® Core ™ i3 2.53 GHz computer with 6 GB memory capacity.

Table 5.2. Parameter values used in this comparison
Parameter Settings Parameter values

Population size for all algorithms
100 for problems with 2 objectives
300 for problems with 3 objectives
500 for problems with 5 objectives

Stop criterion
50,000 evaluations function with 2 objectives

150,000 evaluations function with 3 goals
250,000 evaluations fonction with 5 goals

Number of decision variables for ZDT problems 300 for ZDT1, ZDT2 and ZDT3, and 100 for ZDT4 and ZDT6

Number of decision variables for DTLZ problems
12 for DTLZ1 and DTLZ3, and 120 for all the other problems

DTLZ
Number of independent executions 30 for each algorithm

Mutation rate 1/n (where 𝑛 is the number of decision variables)
Crossover rate for NSGA-II and NSDE 0.8

Mutation scale factor for NSDE 0.5
Neighborhood size for MOEA/D algorithms 20

Inertia weight for the MOPSO algorithm 0.5
(𝐶ଵ, 𝐶ଶ) coéfficients for MOPSO algorithm 𝐶ଵ = 1, 𝐶ଶ = 2

Comparative studies were conducted to evaluate the performance of the six algorithms as
part of a comprehensive suite of benchmark test functions. The simulation results in terms of
measurement of the mean and standard deviation values of the generational distance (GD)
and the inverted generational distance (IGD) over 30 simulation cycles are presented in
Tables 5.3, 5.4 and 5.5. The parentheses next to the test problems indicate the number of
goals (M) and decision variables (D) for the problems.

168 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

ZDT test problems [59] are a set of simple bi-objective optimization problems that are
scalable in the number of decision variables and have different characteristics in the Pareto
optimal front such as the convexity, concavity, discontinuity, local optimality and non-
uniformity. Since most evolutionary algorithms are able to solve ZDT problems without
difficulty, the number of decision variables was set at ten times its original parameters in this
study. This would then pose greater challenges to the algorithms due to a larger search space.
The results indicate that MODE-OBL has the best overall performance. A notable
achievement of MODE-OBL is its ability to achieve convergence for ZDT4 when all other
algorithms cannot for this problem. The ZDT4 problem is an extremely multimodal problem
with the presence of many local optima, and so it is likely that the other algorithms have had
difficulty being trapped in the local optima. The good overall performance obtained by
MODE-OBL can be attributed to the complementary effects of DE based on opposition.

Table 5.3. Results obtained by the algorithms for ZDT problems
Test problem Algorithm IGD GD

ZDT1(2,300)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.118 (7.5e-03) -
0.072 (8.9e-03) -
0.716 (1.9e-01) -
0.339 (4.4e-02) -
0.048 (1.1e-03) -
0.047 (6.8e-04)

0.066 (3.1e-03) -
0.488 (1.5e-01) -
0.286 (4.9e-02) -
0.189 (4.5e-02) -
0.054 (3.3e-03) -
0.052 (3.1e-04)

ZDT2(2,300)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.079 (1.5e-02) -
0.073 (1.8e-03) -
0.060 (2.2e-03) ≈
0.099 (2.9e-03) -
0.232 (6.8e-02) -
0.059 (1.0e-02)

0.366 (1.9e-02) -
0.652 (7.1e-02) -
0.400 (2.2e-02) -
2.889 (1.1e-01) -
1.594 (2.1e-01) -
0.339 (1.8e-02)

ZDT3(2,300)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.447 (2.3e-02) +
0.587 (7.1e-02) -
0.810 (1.2e-01) -
0.669 (2.6e-01) -
0.454 (8.2e-02) -
0.429 (5.4e-02)

0.507 (7.5e-01) -
0.714 (4.9e-01) -
0.870 (1.2e-01) -
0.402 (3.8e-01) -
0.859 (1.4e-01) -
0.283 (3.8e-03)

ZDT4(2,100)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.053 (4.2e-03) -
0.076 (4.6e-04) -
0.067 (1.2e-03) -
0.399 (2.0e-02) -
0.067 (7.3e-03) -
0.048 (7.0e-04)

0.011 (1.3e-03) -
0.347 (2.0e-02) -
0.021 (2.6e-03) -
0.742 (1.0e-05) -
0.024 (5.0e-03) -
0.006 (3.8e-05)

ZDT6(2,100)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.034 (1.1e-03) ≈
0.047 (4.1e-04) -
0.090 (1.9e-02) -
0.321 (5.5e-02) -
0.034 (6.3e-04) +
0.042 (6.4e-04)

0.101 (1.2e-02) -
0.143 (6.4e-03) -
0.087 (2.9e-03) -
1.156 (3.3e-01) -
0.068 (1.5e-03) +
0.108 (9.8e-03)

The suite of DTLZ problems created by [2] can be extended to any number of objectives
and decision variables. Therefore, for this study, the DTLZ problems consisted of three and
five objective functions. The number of decision variables in DTLZ1 and DTLZ3 was fixed
at 12 because they are highly multimodal problems and therefore more difficult. For the
other DTLZ problems, they are generally easier to solve, so the number of decision variables
has been set at 120 instead. For the case of DTLZ problems with three objective functions,
MODE-OBL achieves competitive performances compared to the other algorithms of this
study. Based on the simulation results, MODE-OBL achieves the lowest IGD and GD values
or approaches the best values for most DTLZ problems. However, for the case of DTLZ5
and DTLZ6, MODE-OBL did not perform as well compared to other algorithms. For
DTLZ5, we observe that the NSGA-II algorithm which incorporates the use of the SBX
operator as well as MOPSO gives better results compared to algorithms with the DE
operator. This suggests that using the DE operator may not be as powerful in solving
degenerate Pareto front problems.

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 169

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

In DTLZ problems with five objective functions, the results demonstrate that MODE-
OBL achieves the best overall performance for DTLZ1, DTLZ3 and DTLZ7 when opposed
to all the algorithms compared. For DTLZ2, MODE-OBL reaches the lowest IGD value but
not for the GD metric. For DTLZ4, DTLZ5 and DTLZ6, we observe that the decomposition-
based algorithm generally performs better in terms of better IGD and GD values than the
others for these three problems. This demonstrates the better ability of decomposition-based
algorithms to solve multi-objective problems compared to domination-based algorithms.
This is attributed to the fact that algorithms based on decomposition allow a better selection
of promising solutions by using aggregated fitness values. For the other dominance-based
algorithms in this study, dominance behavior between solutions must be determined before
deciding which solutions are superior. However, as the number of objective functions
increases, dominance behavior will be weakened. Therefore, it will be more difficult for
domination-based algorithms to select the best solutions in a higher objective space.

We observe that MODE-OBL generally shows better performance for DTLZ1, DTLZ3
and DTLZ7, and competitive performance for DTLZ2, with three and five objective
functions. DTLZ1 and DTLZ3 are highly multimodal problems, and the success of MODE-
OBL in dealing with these problems is probably attributed to the strong exploration
capabilities inherent in its DE operator which allows the algorithm to escape the optimal
local. As with DTLZ2, the opposition-based generation jump phase in MODE-OBL helps
produce adequate selection pressure towards the large spherical Pareto front in the large
objective domain. The good performance shown by MODE-OBL for DTLZ7 could also be
attributed to the strong exploratory nature of its DE operator complemented by the ranking-
based mutation operator (RMO) as this helps the algorithm to discover distributed
subpopulations. in all disconnected Pareto-optimal regions. Moreover, the environmental
selection method used is also effective in keeping the solutions found in Pareto-optimal
regions disconnected. These factors may explain why MODE-OBL is able to handle the
DTLZ7 problem well.

Table 5.4. Results obtained by algorithms for DTLZ problems (3 objectives)
Test problem Algorithm IGD GD

DTLZ1(3,12)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.200 (2.3e-02) -
0.198 (3.0e-02) -
0.254 (7.1e-02) -
0.764 (9.1e-02) -
0.439 (2.8e-02) -
0.151 (4.9e-03)

2.802 (9.8e-01) -
2.711 (9.2e-02) +
4.069 (3.0e-01) -
3.147 (1.3e-01) -
3.716 (1.6e+00) -
2.431 (5.6e-02)

DTLZ2(3,120)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.201 (1.5e-01) -
0.178 (8.4e-04) -

0.2719 (5.1e-01) -
0.153 (1.1e-03) +
0.254 (4.3e-02) -
0.154 (8.8e-03)

0.012 (1.9e-03) -
0.006 (1.4e-05) +
2.130 (5.7e+00) -
0.049 (1.4e-02) -
0.742 (5.8e-05) -
0.111 (2.4e-02)

DTLZ3(3,12)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.766 (4.0e-02) -
1.288 (4.1e-01) -
0.948 (2.1e-02) -
0.519 (1.0e-01) +
0.877 (3.5e-01) -
0.565 (1.2e-01)

0.3013 (2.1e-01) -
0.2931 (3.7e-02) +
1.0623 (6.5e-01) -
0.4865 (2.4e-02) -
0.8574 (9.2e-01) -
0.3021 (5.8e-01)

DTLZ4(3,120)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.146 (1.5e-03) +
0.394 (2.9e-02) -
0.463 (8.5e-02) -
0.180 (3.7e-02) -
0.185 (8.2e-05) -
0.158 (6.9e-03)

0.387 (5.0e-04) -
0.368 (1.1e-02) ≈
2.648 (4.1e-01) -
0.391 (2.1e-02) -
0.431 (5.2e-02) -
0.368 (8.2e-03)

DTLZ5(3,120)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.100 (1.5e-03) +
0.177 (5.7e-03) -
0.537 (6.8e-03) -
0.099 (4.6e-06) +
0.231 (1.6e-02) -
0.124 (2.7e-03)

0.253 (5.3e-03) -
0.046 (3.2e-03) +
0.134 (6.6e-01) -
0.026 (1.5e-02) +
0.668 (8.1e-01) -
0.211 (4.7e-03)

170 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

DTLZ6(3,120)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.413 (7.1e-02) -
9.086 (4.8e+00) -
0.201 (4.1e-02) -
0.112 (3.1e-03) -
0.113 (2.5e-03) -
0.099 (2.9e-03)

1.874 (6.3e-01) -
1.272 (3.6e-02) -
2.063 (6.1e-02) -
0.246 (1.3e-03) +
1.346 (5.5e-02) -
1.080 (7.3e-03)

DTLZ7(3,120)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

2.547 (2.1e-01) +
11.18 (9.6e+00) -
18.07 (2.5e+02) -
6.061 (6.1e-01) -
7.645 (1.1e+00) -
2.614 (7.7e-02)

0.813 (3.8e-01) -
0.791 (4.2e-02) -
0.955 (2.1e-01) -
0.744 (6.4e-01) -
0.669 (8.6e-02) -
0.668 (2.2e-03)

Table 5.5. Results obtained by algorithms for DTLZ problems (5 objectives)
Test problem Algorithm IGD GD

DTLZ1(5,12)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

1.355 (2.6e-02) -
8.413 (3.7e+00) -
1.686 (1.1e-01) -
1.344 (5.0e-06) -
1.567 (5.7e-02) -
1.227 (3.8e-03)

1.814 (1.6e-02) -
3.297 (1.0e+00) -
2.278 (3.2e-01) -
1.745 (1.4e-02) -
1.793 (2.2e-02) -
1.726 (2.5e-02) +

DTLZ2(5,120)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

0.410 (5.9e-02) -
1.397 (5.0e-05) -
3.561 (3.2e-02) -
0.257 (1.1e-03) -
0.658 (7.4e-02) -
0.224 (4.7e-03)

0.194 (7.2e-01) -
0.438 (3.2e-02) -
4.152 (4.2e-01) -
0.156 (1.2e-03) +
0.306 (4.6e-02) -
0.218 (2.1e-02) -

DTLZ3(5,12)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

1.548 (5.9e-02) -
3.157 (2.5e+00) -
4.699 (2.1e+00) -
0.881 (1.1e-01) -
1.978 (4.1e-01) -
0.682 (2.1e-01)

2.852 (4.4e-03) -
4.043 (8.7e-02) -
2.973 (2.2e+00) -
1.663 (2.1e-02) +
2.528 (5.8e-02) -
1.906 (4.5e-03) -

DTLZ4(5,120)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

2.245 (8.9e-03) -
4.398 (2.2e-02) -
6.544 (3.9e-02) -
2.224 (1.4e-03) +
2.365 (1.1e-02) -
2.330 (1.6e-02) -

0.956 (1.4e-02) -
1.030 (8.0e-02) -
3.680 (8.7e-01) -
0.899 (2.0e-02) +
3.258 (3.9e-01) -
1.269 (4.4e-02) -

DTLZ5(5,120)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

1.267 (1.4e-02) -
3.441 (4.7e-02) -
2.811 (4.3e-02) -
1.169 (5.0e-03) +
1.345 (2.8e-02) -
1.219 (1.0e-02) -

0.475 (1.2e-01) -
8.762 (5e+05) -
4.75 (1.4e-01) -

0.097 (5.7e-02) +
1.682 (5.7e+01) -
1.104 (2.0e-03) -

DTLZ6(5,120)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

2.2e+09 (6e+09) -
5.9e+10 (3e+10) -
2.946 (2.7e+01) -
1.061 (5.5e-02) -
1.402 (8.5e-02) -
0.927 (2.8e-03)

15.735 (1.1e+00) -
17.512 (3.7e+01) -
17.23 (1.3e+02) -
4.98 (2.1e+00) +

12.887 (3.2e+00) -
9.216 (6.2e+00) -

DTLZ7(5,120)

NSGA-II
MOPSO
NSDE

MOEA/D-DE
MODE-RMO
MODE-OBL

1.498 (1.7e-03) -
1.463 (4.3e-01) -
12.02 (2.7e+01) -
1.320 (2.3e-02) -
1.946 (4.3e-01) -
1.053 (4.0e-03)

2.565 (4.6e-01) -
7.127 (3.8e+02) -
7.982 (2.2e-03) -
3.287 (6.8e-00) -
3.889 (1.4e+01) -
1.996 (5.2e-01)

6. APPLICATION ON PORTFOLIO OPTIMIZATION PROBLEM

Computational finance is an emerging application field of metaheuristic algorithms. These
optimization methods are becoming the solving approach alternative when dealing with
realistic versions of several decision-making problems in finance.

The portfolio selection problem can be defined as the optimal allocation of wealth among
a finite number of assets that follows careful processing of all available information about

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 171

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

both investors and markets. Markowitz’s mean-variance model is by far the most popular
procedure in asset allocation [60].

There are a few key concepts in portfolio optimization. First, reward and risk are
measured by expected return and variance of a portfolio. Expected return is calculated based
on historical performance of an asset, and variance is a measure of the dispersion of returns.
Second, investors are exposed to two types of risk: unsystematic risk and systematic risk.
Unsystematic risk is an asset’s intrinsic risk which can be diversified away by owning a large
number of assets. These risks do not present enough information about the overall risk of the
entire portfolio. Systematic risk, or the portfolio risk, is the risk generally associated with the
market which cannot be eliminated. Third, the covariance between different asset returns
gives the variability or risk of a portfolio. Therefore, a well-diversified portfolio contains
assets that have little or negative correlations [61].

EAs work with a set of solutions, called population. This feature is particularly suitable
for solving multi-objective problems, as it enables approximating the efficient frontier in a
single run. As a result, multi-objective evolutionary algorithms (MOEAs) have received
growing attention to financial applications [62]. In fact, portfolio optimization was one of the
first successful applications of MOEAs in economics and finance.

Increasing complexity of practical applications has led researchers to develop heuristic
procedures for solving their portfolio optimization problems. These techniques require less
domain information to be considered than the standard gradient-based mathematical
programming methods do. Moreover, they guarantee satisfactory approximations to solutions
in a fair computational time even when they deal with non-convexity, discontinuity, and
integer decision variables. The approaches that have been proposed in the soft-computing
literature can be categorized into the following two groups. On one hand, single objective
methods optimize a weighted sum of the portfolio objectives. On the other hand, multi-
objective evolutionary algorithms (MOEAs) attempt to tackle the allocation problem directly
in its multi-objective form by simultaneously optimizing risk and reward. In the first case,
the complete set of risk-return profiles is obtained by varying a parameter that represents the
risk aversion of the investor [63] [64]. In the second case, the complete efficient frontier is
represented in a single run [65] [66]. Both categories pay great attention to encoding types
and constraint–handling techniques [67].

While single objective optimization methods consider either a minimal risk for a given
return or a maximum risk for a given expected return or an objective function that weights
the two goals and thus have to be run several times with the respective weights [68], multi-
objective optimization methods find a set of Pareto solutions, while balancing two or more
objective functions simultaneously.

6.1. Problem formulation

The key to achieving investors’ objectives is to provide an optimal portfolio strategy which
shows investors how much to invest in each asset in a given portfolio. Therefore, the
decision variable of portfolio optimization problems is the asset weight vector

 Tnxxxx ,..., 21 with ix as the weight of asset i in the portfolio. The expected return for each

asset in the portfolio is expressed in the vector form  Tnpppp ,..., 21 with ip as the mean

return of asset i . The portfolio expected return is the weighted average of individual asset
return (Eq 6.2) Variance and covariance of individual asset are characterized by a variance-

covariance matrix


















nnn

n

v











1

111

, where ii , is the variance of asset i and ji , is the

covariance between asset i and asset j . The portfolio variance is defined in Eq (6.1).

172 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

The mathematical representation of portfolio optimization was introduced by Markowitz
in the fifties and he was rewarded with a Nobel Prize in Economics in 1990 [69]. The
Markowitz model assumes the investors would like to maximize the return under certain risk
level or minimize the risk with certain return level and this model makes use of the mean and
variance of normalized historical asset price to measure the expected portfolio return and risk
[70].The model can be expressed as a bi-objective problem and formulated as following:

𝑀𝑖𝑛: Risk 𝜎ଶ = ෍ ෍ 𝑤௜𝑤௝𝜎௜௝

௡

௝ୀଵ

௡

௜ୀଵ

 (6.1)

𝑀𝑎𝑥: Return r௣ = ෍ ෍ 𝑤௜𝑟௜

௡

௝ୀଵ

௡

௜ୀଵ

 (6.2)

subject to

෍ 𝑤௜ = 1

௡

௜ୀଵ

; 𝑤௜ ≥ 0, (6.3)

where 𝑛 is the number of assets in the portfolio and the dimension of the problem, 𝑤௜ is the
weight of 𝑖௧௛ asset. 𝜎ଶ stands for the portfolio risk and 𝜎௜௝ is the covariance between asset 𝑖
and asset 𝑗. If 𝑖 = 𝑗, 𝜎௜௝ is just the variance of that particular asset. 𝑟௣ is the portfolio return,
while 𝑟௜ is the individual return of asset 𝑖.

6.2. Experimental Settings and dataset

All the experiments are conducted using standard Markowitz (mean-variance) model. 100
days’ closing prices of 100 and 500 stocks were downloaded and used as the historical stock
data in the simulation and used as the test data used in the simulation. Stocks’ monthly
returns and close prices are picked from [71]. A monthly return calculation is formulated as:

𝑀௧ = ln
௉೟

௉೟షభ
; Where, 𝑃(𝑡) is the closing price, 𝑃(𝑡 − 1) is the closing price in the day before

and 𝑀(𝑡) is the monthly return. Experiments are conducted on 100 and 500 stocks. Thus, the
chromosome size is 100 and 500, respectively. And the number of function evaluation is
100000 and 300000 respectively for all the three algorithms and all algorithms are run 25
times with random initialization.

Except MODE-OBL, two other multi-objective evolutionary algorithms are also tested on
this portfolio optimization problem for comparison due to their superiority respected to GD
and IGD metrics in different benchmarks problems tested previously. For real-coded NSGA-
II, a population size of 100 is used, crossover probability of 0.9 and mutation probability of
1/n , where n is the number of decision variables, distribution indexes for crossover and
mutation operators as presented in [72]. MOEA/D-DE uses a population size of 100, F is set
to 0.5 and CR is set to 0.1.

To check the robustness of the results, 25 simulations for each algorithm and for each test
problem are used. The algorithms are implemented in MATLAB R2019b and the
experiments are carried out on a 2.6 GHz Intel Core i5 7300U laptop with 8 GB RAM.

6.3. Experimental Results

A set of non-dominated solutions generated by MOEAs can be measured with different
performance metrics available in the literature. In case, we don't have information regarding
true Pareto front, then coefficient of variation measure 𝐶𝑉 defined as follow (Eq 6.4) is used:

𝐶𝑉 =
𝑚

𝜎
= 𝑚𝑒𝑎𝑛 (𝐽(𝑥), 𝑥 ∈ 𝑋 | ඥ𝑉𝑎𝑟{𝐽(𝑥), 𝑥 ∈ 𝑋} (6.4)

which allows to determine how much volatility, or risk, is assumed in comparison to the
amount of expected return from investments and spacing metric (SP) suggested by [73] is

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 173

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

calculated with a relative distance measure between consecutive solutions in the obtained
non-dominated set, as follows:

𝑆𝑃 = ඨ
1

|𝑆| − 1
෍൫𝑑̅ − 𝑑௜൯

ଶ

|ௌ|

௜ୀଵ

, (6.5)

where 𝑑௜ = 𝑚𝑖𝑛(௦೔,௦ೕ)∈ௌ, ௦೔ಯ௦ೕ
 ฮ𝐹(𝑠௜) − 𝐹(𝑠௝)ฮ

ଵ
is the 𝑙ଵ distance between a point 𝑠௜ ∈ 𝑆 and the

closest point of the Pareto front approximation produced by the same algorithm, and 𝑑̅ the
mean of the 𝑑௜.

From the results obtained in Table 6.1, it is observed that MODE-OBL obtains better
pareto-optimal fronts with better convergence and diversity comparing with NSGA-II and
MOEA/D-DE on 100-stocks problem. The differences among various algorithms are small
compared with the results obtained in terms of distribution metric with slight superiority of
MODE-OBL. Note that MOEA/D-DE showed good performance when optimizing the 500-
stock portfolio indicating that multi-objective algorithm-based decomposition approach has a
stronger ability in solving large-scale optimization problem.

A better insight into the nature of the found solutions can be obtained by analyzing Fig
6.1 and Fig 6.2. The plots presented in these figures show the efficient frontiers. As can been
seen from these plots, the best results (Risk/Return) are generated by MOEA/D-DE in 500-
stocks and quasi-consistent with the results obtained by MODE-OBL in 100-stocks.
Although NSGAII performs the worst, it can still generate distributed and satisfactory fronts.
The experiments conducted on portfolio optimization problems with 100 and 500 stocks
show that the Multi-objective differential algorithm based ranking mutation combined with
opposition-based learning presented an excellent performance comparing with other two
multi-objective evolutionary algorithms and was a potential solution for this kind of
problems.

Table 6.1. The comparison results of algorithms MODE-OBL, MOEA/D-DE, NSGA-II
Dataset Metrics Statistics MODE-OBL MOEA/D-DE NSGA-II

100 stocks

Risk
Best
Avg

0.0281e-04(1.0019)
0.0742e-04(1.0093)

0.0697e-04(1.0017)
0.0665e-04(1.0087)

0.1351e-04(1.0016)
0.6894e-04(1.0083)

Return
Best
Avg

1.1056(2.0036e-04)
1.0093 (0.0742e-04)

1.1036(2.004e-04)
1.0087(0.0665e-04)

1.1036(2.004e-04)
1.0083(0.0689e-04)

Coefficient
of variation

(CV)

Best
Worst
Avg

6.7795e-03
1.4993e-02
1.1725e-02

2.5005e-01
2.9526e-01
2.7482e-01

5.2053e-01
5.6592e-01
5.4216e-01

Spacing
metric (SP)

Best
Worst
Avg

6.9662e-06
1.4376e-05
1.0603e-05

8.9935e-06
1.9869e-05
1.2816e-05

6.6883e-05
1.4525e-04
9.8367e-05

500 stocks

Risk
Best
Avg

0.2107e-04(1.0023)
0.4890e-04(1.0053)

0.1890e04(1.0025)
0.5156e-04(1.0057)

0.3772e-04(1.0024)
0.6135e-04 (1.0043)

Return
Best
Avg

1.0067(1.0956e-04)
1.0053(0.4890e-04)

1.0071(1.0253e-04)
1.0057(0.5156e-04)

1.0051(1.2715 e-04)
1.0043(0.6135e-04)

Coefficient
of variation

(CV)

Best
Worst
Avg

1.3851e-02
3.5104e-01
2.8757e-01

1.5036e-02
3.4263e-01
2.6981e-01

5.6942e-01
8.9172e-01
6.7819e-01

Spacing
metric (SP)

Best
Worst
Avg

2.1776e-04
2.5627e-04
2.3606e-04

1.4915e-04
5.1583e-04
2.7524e-04

1.3038e-02
4.1017e-02
2.9133e-02

174 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

Fig 6.1 pareto frontier generated of 100 stocks problem

Fig. 6.2. Pareto frontier generated of 500 stocks problem

This work applied Multi-objective differential algorithm based ranking mutation
combined with opposition-based learning to solve the large-scale portfolio optimization
problems. The experiments conducted on portfolio optimization problems with 100 and 500
stocks show that the proposed algorithm presented a better performance comparing with
other two multi-objective evolutionary algorithms and was a potential solution for this kind
of problems.

7. CONCLUSION

This paper proposed a hybridized multi-objective differential evolution variant based on
opposition-based learning. The proposed algorithm MODE-OBL inherited two operators
from the original MODE: selection count dominance and crowding distance. Ranking based
mutation from MODE-RMO is used to accelerate the convergence rate, then a new generated
population passed to the second stage in order to maintain diversity of solution by the
opposition-based learning technique. Experiments on mathematical benchmark functions and
financial portfolio optimization problem were performed to make an extensive comparison of
MODE-OBL with a series of multi-objective algorithms and MODE-OBL was considered to
be competitive with other methods. However, there is still a lot of room for improvement in
the improvement aspect of MODE, and this paper aims to explore feasible ways to improve
the basic MODE algorithm to handle a wide range of MOP.

Future research will be directed to applying others selection techniques and verifying the
MODE-OBL on more real-world problems such as telecommunication network design.

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 175

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

REFERENCES

1. Abbass, H. A., Sarker, R., & Newton, C. (2001). PDE: A Pareto-frontier differential
evolution approach for multi-objective optimization problems, Proc. of the IEEE Conference
on Evolutionary Computation (ICEC) (Chicago, IL).

2. Ahandani, M. A., & Alavi-Rad, H. (2012). Opposition-based learning in the shuffled
differential evolution algorithm, Soft Computing, 16, 1303–1337.

3. Ali, M. M. (2011). Differential evolution with generalized differentials, Journal of
Computational and Applied Mathematics, 235(8), 2205–2216.

4. Ali, M., Siarry, P., & Pant, M. (2012). An efficient Differential Evolution based
algorithm for solving multi-objective optimization problems, European Journal of
Operational Research, 217(2), 404–416.

5. Angira, R., & Babu, B. V. (2005). Non-dominated sorting differential evolution
(NSDE): An extension of differential evolution for multi-objective optimization, Proc. of the
2nd Indian International Conference on Artificial Intelligence (IICAI) (Tumkur, Karnataka,
India).

6. Baatar, N., Jeong, K. Y., & Koh, C. S. (2014). Adaptive parameter controlling non-
dominated ranking differential evolution for multi-objective optimization of electromagnetic
problems, IEEE Transactions on Magnetics, 50(2), 709–712.

7. Bandyopadhyay, S., & Mukherjee, A. (2015). An algorithm for many-objective
optimization with reduced objective computations: A study in differential evolution, IEEE
Transactions on Evolutionary Computation, 19(3), 400–413.

8. Beume, N., Naujoks, B., & Emmerich, M. (2007). SMS-EMOA: Multiobjective
selection based on dominated hypervolume, European Journal of Operational Research,
181(3), 1653–1669.

9. Caponio, A., Neri, F., & Tirronen, V. (2009). Super-fit control adaptation in memetic
differential evolution frameworks, Soft Computing, 13, 811–831.

10. Chen, X., Du, W., & Qian, F. (2014). Multi-objective differential evolution with
ranking-based mutation operator and its application in chemical process optimization,
Chemometrics and Intelligent Laboratory Systems, 136, 85–96.

11. Coello, C. A. C., & Cortés, N. C. (2005). Solving multiobjective optimization
problems using an artificial immune system, Genetic Programming and Evolvable Machines,
6, 163–190.

12. Coello Coello, C. A., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple
objectives with particle swarm optimization, IEEE Transactions on Evolutionary
Computation, 8(3), 256–279.

13. Coello Coello, C. A., & Reyes-Sierra, M. (2006). Multi-Objective Particle Swarm
Optimizers: A Survey of the State-of-the-Art, International Journal of Computational
Intelligence Research, 2(3), 287–308.

14. Cura, T. (2009). Particle swarm optimization approach to portfolio optimization.
Nonlinear Analysis: Real World Applications. https://doi.org/10.1016/j.nonrwa.2008.04.023

15. Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential
evolution-An updated survey, Swarm and Evolutionary Computation, 27, 1–30.

16. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002a). A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary
Computation, 6(2), 182–197.

17. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002b). A fast and elitist
multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary
Computation, 6(2), 182–197.

18. Deb, K., Thiele, L., Laumanns, M., & Zitzler, E. (2002). Scalable multi-objective
optimization test problems, Proc. of the 2002 Congress on Evolutionary Computation (CEC
2002) (Honolulu, HI).

19. Denysiuk, R., Costa, L., & Santo, I. E. (2013). Many-objective optimization using

176 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

differential evolution with variable-wise mutation restriction, Proc. of the 2013 Genetic and
Evolutionary Computation Conference (GECCO 2013) (Amsterdam, The Netherlands).

20. Dong, N., & Wang, Y. (2014). A memetic differential evolution algorithm based on
dynamic preference for constrained optimization problems, Journal of Applied Mathematics,
2014, 606019.

21. Duan, Y. C. (2004). A Multi-Objective Approach to Portfolio Optimization, Rose-
Hulman Undergraduate Mathematics Journal, 8, 207–227.

22. Gong, W., & Cai, Z. (2013). Differential evolution with ranking-based mutation
operators, IEEE Transactions on Cybernetics, 43(6), 2066–2081.

23. Gong, W., Cai, Z., & Liang, D. (2014). Engineering optimization by means of an
improved constrained differential evolution, Computer Methods in Applied Mechanics and
Engineering, 268, 884–904.

24. Guerard, J. (2016). The theory of risk, return, and performance measurement, Portfolio
Construction, Measurement, and Efficiency: Essays in Honor of Jack Treynor, 1–38.

25. Huang, V. L., Qin, A. K., Suganthan, P. N., & Tasgetiren, M. F. (2007). Multi-
objective optimization based on self-adaptive differential evolution algorithm, Proc. of 2007
IEEE Congress on Evolutionary Computation (CEC 2007) (Singapore).

26. Huang, V. L., Zhao, S. Z., Mallipeddi, R., & Suganthan, P. N. (2009). Multi-objective
optimization using self-adaptive differential evolution algorithm, Proc. of 2009 IEEE
Congress on Evolutionary Computation (CEC 2009) (Trondheim, Norway).

27. Janga Reddy, M., & Nagesh Kumar, D. (2012). Computational algorithms inspired by
biological processes and evolution, Current Science, 103(4), 370–380.

28. Kumar, R. (2016). Risk and return, Valuation: Theories and Concepts, 2016, 47–72.
29. Li, K., Fialho, A., Kwong, S., & Zhang, Q. (2014). Adaptive operator selection with

bandits for a multiobjective evolutionary algorithm based on decomposition, IEEE
Transactions on Evolutionary Computation, 18(1), 114–130.

30. Liang, J. J., Zheng, B., Xu, F. Y., Qu, B. Y., & Song, H. (2014). Multi-objective
differential evolution algorithm based on fast sorting and a novel constraints handling
technique, Proc. of the 2014 IEEE Congress on Evolutionary Computation (CEC 2014)
(Beijing, China).

31. Lin, P. C. (2012). Portfolio optimization and risk measurement based on non-
dominated sorting genetic algorithm, Journal of Industrial and Management Optimization,
8(3), 549–564.

32. Luong, D. L., Tran, D. H., & Nguyen, P. T. (2018). Optimizing multi-mode time-
cost-quality trade-off of construction project using opposition multiple objective difference
evolution, International Journal of Construction Management, 21(3), 271–283.

33. Madavan, N. K. (2002). Multiobjective optimization using a Pareto differential
evolution approach, Proc. of the 2002 Congress on Evolutionary Computation (CEC 2002)
(Honolulu, HI).

34. Mahdavi, S., Rahnamayan, S., & Deb, K. (2018). Opposition based learning: A
literature review, Swarm and Evolutionary Computation, 39, 1–23.

35. Markowitz, H. (2014). Mean-variance approximations to expected utility, European
Journal of Operational Research, 234(2), 346–355.

36. Meghwani, S. S., & Thakur, M. (2017). Multi-criteria algorithms for portfolio
optimization under practical constraints, Swarm and Evolutionary Computation, 37, 104–125.

37. Metaxiotis, K., & Liagkouras, K. (2015). The solution of the 0-1 multi-objective
knapsack problem with the assistance of multi-objective evolutionary algorithms based on
decomposition: A comparative study, Proc. of the 5th International Workshop on Computer
Science and Engineering: Information Processing and Control Engineering (WCSE 2015-
IPCE) (Moscow, Russia).

38. Mishra, S. K., Panda, G., & Majhi, R. (2014). A comparative performance assessment
of a set of multiobjective algorithms for constrained portfolio assets selection, Swarm and

 A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION… 177

Copyright ©2023 ASSA. Adv. in Systems Science and Appl. (2023)

Evolutionary Computation, 16, 38–51.
39. P-N-Suganthan. (2017). Large-Scale Portfolio Optimization Using Multiobjective

Evolutionary Algorithms and Preselection Methods, [Online]. Available:
https://github.com/P-N-Suganthan/CODES/blob/master/2017-MPE-Portfolio.rar

40. Pai, G. A. V. (2019). Multi-objective Metaheuristics for Managing Futures Portfolio
Risk, Proc. of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI 2018)
(Bangalore, India).

41. Pant, M., Thangaraj, R., & Abraham, A. (2011). De-PSO: a new hybrid meta-
heuristic for solving global optimization problems. New Mathematics and Natural
Computation, 07(03) 363–381.

42. Park, S. Y., & Lee, J. J. (2016). Stochastic Opposition-Based Learning Using a Beta
Distribution in Differential Evolution, IEEE Transactions on Cybernetics, 46(10), 2184–2194.

43. Ponsich, A., Jaimes, A. L., & Coello, C. A. C. (2013). A survey on multiobjective
evolutionary algorithms for the solution of the portfolio optimization problem and other
finance and economics applications, IEEE Transactions on Evolutionary Computation,
17(3), 321–344.

44. Qian, W., & Li, A. (2008). Adaptive differential evolution algorithm for
multiobjective optimization problems, Applied Mathematics and Computation, 201(1–2),
431–440.

45. Quintana, D., Denysiuk, R., Garcia-Rodriguez, S., & Gaspar-Cunha, A. (2017).
Portfolio implementation risk management using evolutionary multiobjective optimization,
Applied Sciences, 7(10), 1079.

46. Rahnamayan, R. S., Tizhoosh, H. R., & Salama, M. M. A. (2008). Opposition-based
differential evolution, IEEE Transactions on Evolutionary Computation, 12(1), 64–79.

47. Rakshit, P., Konar, A., Das, S., Jain, L. C., & Nagar, A. K. (2014). Uncertainty
management in differential evolution induced multiobjective optimization in presence of
measurement noise, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(7),
922–937.

48. Robič, T., & Filipič, B. (2005). DEMO: Differential Evolution for Multiobjective
Optimization, Proc. of the 3rd International Conference Evolutionary Multi-Criterion
Optimization (EMO 2005) (Guanajuato, Mexico).

49. Santana-Quintero, L. V., Hernández-Díaz, A. G., Molina, J., Coello Coello, C. A., &
Caballero, R. (2010). DEMORS: A hybrid multi-objective optimization algorithm using
differential evolution and rough set theory for constrained problems, Computers and
Operations Research, 37(3), 470–480.

50. Schott, J. R. (1995). Fault Tolerant Design Using Single and Multicriteria Genetic
Algorithm Optimization. Ph.D Thesis, Massachusetts Institute of Technology.

51. Sharma, S., & Rangaiah, G. P. (2013). An improved multi-objective differential
evolution with a termination criterion for optimizing chemical processes, Computers and
Chemical Engineering, 56, 155–173.

52. Shen, Y., & Wang, Y. (2017). Operating Point Optimization of Auxiliary Power Unit
Using Adaptive Multi-Objective Differential Evolution Algorithm, IEEE Transactions on
Industrial Electronics, 64(1), 115–124.

53. Tang, L., Wang, X., & Dong, Z. (2019). Adaptive Multiobjective Differential
Evolution with Reference Axis Vicinity Mechanism, IEEE Transactions on Cybernetics,
49(9), 3571–3585.

54. Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for machine
intelligence, Proc. of International Conference on Computational Intelligence for Modelling,
Control and Automation and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (CIMCA-IAWTIC'06) (CIMCA 2005) (Vienna,
Austria).

55. V. L. Huang, P. N. Suganthan, A. K. Qin, & B. Subramanian (2005). Multiobjective

178 N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE

Copyright ©0000 ASSA Adv. in Systems Science and Appl.
(0000)

differential evolution with external archive and harmonic distance-based diversity measure,
[Online]. Available: https://www.researchgate.net/publication/228967624_Differential_
Evolution_with_External_Archive_and_Harmonic_Distance-Based_Diversity_Measure.

56. Van Veldhuizen, D. A., & Lamont, G. B. (1998). Evolutionary Computation and
Convergence to a Pareto Front. In: J.R. Koza (Eds.), Late Breaking Papers at the Genetic
Programming 1998 Conference. Stanford, CA: Stanford University Bookstore.

57. Wang, G. G., Deb, S., Gandomi, A. H., & Alavi, A. H. (2016). Opposition-based krill
herd algorithm with Cauchy mutation and position clamping, Neurocomputing, 177, 147–
157.

58. Wang, H., Wu, Z., Rahnamayan, S., Liu, Y., & Ventresca, M. (2011). Enhancing
particle swarm optimization using generalized opposition-based learning, Information
Sciences, 181(20), 4699–4714.

59. Wang, J., Zhang, W., & Zhang, J. (2016). Cooperative Differential Evolution with
Multiple Populations for Multiobjective Optimization, IEEE Transactions on Cybernetics,
46(12), 2848–2861.

60. Wang, X., & Tang, L. (2013). Multiobjective operation optimization of naphtha
pyrolysis process using parallel differential evolution, Industrial and Engineering Chemistry
Research, 52(40), 14415–14428.

61. Wang, X., & Tang, L. (2016). An adaptive multi-population differential evolution
algorithm for continuous multi-objective optimization, Information Sciences, 348, 124–141.

62. Wang, Y. N., Wu, L. H., & Yuan, X. F. (2010). Multi-objective self-adaptive
differential evolution with elitist archive and crowding entropy-based diversity measure, Soft
Computing, 14, 193–209.

63. Woodside-Oriakhi, M., Lucas, C., & Beasley, J. E. (2011). Heuristic algorithms for
the cardinality constrained efficient frontier, European Journal of Operational Research,
213(3), 538–550.

64. Xu, B., Qi, R., Zhong, W., Du, W., & Qian, F. (2013). Optimization of p-xylene
oxidation reaction process based on self-adaptive multi-objective differential evolution,
Chemometrics and Intelligent Laboratory Systems, 127, 55–62.

65. Yang, S., Jiang, S., & Jiang, Y. (2017). Improving the multiobjective evolutionary
algorithm based on decomposition with new penalty schemes, Soft Computing, 21, 4677–
4691.

66. Yang, X. S. (2013). Multiobjective firefly algorithm for continuous optimization,
Engineering with Computers, 29, 175–184.

67. Zhang, J., & Sanderson, A. C. (2008). Self-adaptive multi-objective differential
evolution with direction information provided by archived inferior solutions, Proc. of IEEE
Congress on Evolutionary Computation (CEC 2008) (Hong Kong, China).

68. Zhang, J., & Sanderson, A. C. (2009). JADE: Adaptive differential evolution with
optional external archive, IEEE Transactions on Evolutionary Computation, 13(5), 945–958.

69. Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm
based on decomposition, IEEE Transactions on Evolutionary Computation, 11(6), 712–731.

70. Zhang, X., Tian, Y., Cheng, R., & Jin, Y. (2015). An Efficient Approach to
Nondominated Sorting for Evolutionary Multiobjective Optimization, IEEE Transactions on
Evolutionary Computation, 19(2), 201–213.

71. Zhang, Y., Wang, S., & Ji, G. (2015). A Comprehensive Survey on Particle Swarm
Optimization Algorithm and Its Applications, Mathematical Problems in Engineering, 2015,
931256.

72. Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N., & Zhangd, Q. (2011).
Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm and
Evolutionary Computation, 1(1), 32–49.

73. Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary
algorithms: empirical results, Evolutionary Computation, 8(2), 173–195.

