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Abstract: Evolutionary algorithms have been shown to be powerful for solving multi-objective 
optimization problems, where non-dominated sorting is a widely adopted selection method. In 
this paper, a new two stage hybridized multi-objective evolutionary algorithm, are evolved. 
Firstly, multi-objective differential evolution based on ranking mutation is applied using non-
dominated sorting and crowding distance. Secondly, jumping probability is used in second stage 
in order to meet the objective of balancing the precision of the solution and the rate of 
convergence while maintaining the diversity of the population by opposition-based learning 
technique. Through the validation of the new approach using a suite of carefully selected test 
benchmarks problems with complex Pareto sets and solve a large portfolio complex problem , it 
is observed that our hybridization achieves overall better performance in terms of convergence 
and diversity compared to other algorithms of literature.  
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1. INTRODUCTION 

Among the recent advances in optimization algorithms, evolutionary algorithms (EAs) have 
proven successful in overcoming difficulties with traditional optimization techniques either 
in their standard version, or hybridized [1]. EAs work with a set of solutions, called 
population. This feature is particularly suitable for solving multi-objective problems, as it 
enables approximating the efficient frontier in a single run. A Multi-Objective Evolutionary 
Algorithm (MOEA) is a modified version of the traditional Genetic Algorithm (GA) - also 
known as the simple GA, designed to solve multi-objective optimization problems (MOPs). 
MOEAs have been recognized to be suitable for solving multi-objective optimization 
problems because of their ability to find good solutions for competing objective functions 
simultaneously and to search for multiple non-dominated solutions simultaneously in the 
population of candidate solutions. This capability enables them to find several trade-off 
solutions for all objectives in a single run of the algorithm, instead of having to perform a 
series of separate runs as in the case of the traditional techniques such as weighted sum, goal 
programming and weighted min-max methods. Ideally, a MOEA returns a Pareto-optimal 
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set, the solutions not dominated by any other solution in the search space. In addition, 
MOEAs are less susceptible to the shape or continuity of the Pareto-optimal front, whereas 
these two issues pose a problem for the mentioned traditional techniques. 

In the past two decades , multi-objectives optimization has attracted increasing interests 
in the evolutionary computation community, and a large number of multi-objective 
optimization algorithms have been developed on the basis of different population based 
meta-heuristics, such as genetic algorithm [2], differential evolution algorithm [3], firefly 
algorithm [4], particle swarm optimization algorithm [5], SMS-EMOA[6]. Although various 
approaches have been adopted for selection [7], most MOEAs adopt the Pareto-based 
approach, i.e., the qualities of the candidate solutions are compared using Pareto dominance. 
Among various dominance comparison mechanisms, non-dominated sorting has been shown 
to be very effective for finding Pareto-optimal solutions. Much work has also been done to 
efficiently store non dominated solutions found during search in an archive. Non-dominated 
sorting is a procedure where solutions in the population are assigned to different fronts based 
on their dominance relationships. 

Differential Evolution (DE) is a simple and efficient population-based EA that has been 
reported in several studies for its high robustness, fast convergence speed, and good solution 
quality, making it a very popular EA in the evolutionary computing community. Due to these 
strengths observed in DE, the use of this EA may provide an answer to some, but not all, of 
the above limitations. In order to overcome these limitations, several improvement works 
were carried out on DE in order to allow it to meet the objective of balancing the precision of 
the solution and the rate of convergence while maintaining the diversity of the population for 
different types of MOOP. In order to simultaneously achieve fast convergence speed and 
efficient global search capacity, researchers explored the use of hybridization of different 
EAs for MOOPs as well as the formulation of memory algorithms that integrate local search 
into EAs, and these efforts can also be found in DE [8][9]. Researchers have also introduced 
the use of adaptive or self-adaptive DE variants [10][11] which eliminate the need to 
undergo the tedious process of trial and error setting the control parameters in DE to an 
optimum setting for the problems tested.  

Differential evolution as one of the most evolutionary algorithms, has been widely 
applied to solve multi-objective optimization problems due to its simple implementation and 
fast convergence. In order to apply DE to multi-objective optimization, there are at least two 
fundamental issues to be addressed. The first issue is how to define the best individual, given 
that there does not exist any individual which can perform the best on all objectives of an 
MOP. The second issue is how to balance convergence and diversity of the population. Since 
the target of multi-objective optimization is to obtain a set of trade-off solutions, diversity 
maintenance is particularly important. A DE based multi-objective algorithm is very likely to 
be trapped in local optimum (or one of the many optima) of an MOP due to its fast 
convergence. There-fore, striking a balance between convergence and diversity is crucial to 
the performance of multi-objective DE algorithm. 

2. DIFFERENTIAL EVOLUTION FOR MOP 

Several researchers have applied DE to solve multi-objective problems [12], with superior 
and impressive performance to other multi-objective algorithms in benchmarks and widely 
practical applications. Reported and verified [13][14], the general DEMO procedure is 
shown in Algorithm 1. Like DE, the algorithm starts with a population P randomly created 
solutions. For each generation, the following steps are repeated. A candidate is constructed 
from its parent (and other solutions of P) using the DE/rand/1/bin strategy described 
previously. After that, the candidate is assessed and compared to his parent. At this point, 
DEMO differs from DE (see step 2.1 (c) in Algorithms 1). In DEMO, the candidate replaces 
the parent only if he dominates him. If the parent dominates the candidate, the candidate is 
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discarded. Otherwise (when the candidate and the parent are incomparable), the candidate is 
added to the population. After repeating this step p times, we obtain a population of size 
between p and 2p. If the population has grown in size, it should be truncated to size p using 
one of the environmental selection approaches. At the end of the generation, the solutions of 
P are listed at random (as in DE). The end result of DEMO consists of non-dominated 
solutions of P. 
 
General MODE algorithm 1 [15] 
Input: parameters of the algorithm. 
Output: Non-dominated solutions of P. 
1. Evaluate the initial population P of p random solutions. 
2. While the stop criterion has not been met, proceed as follows: 

2.1. For each solution 𝑥௜  (𝑖 = 1, … , 𝑝) of P repeat: 
(a) Create candidate c from parent 𝑥௜ 
(b) Calculate the candidate's goals. 
(c) If the candidate dominates the parent, the candidate replaces the parent. 
If the parent dominates the candidate, the candidate is discarded. Otherwise, 
the candidate is added to the population. 

2.2. If the population has more p solutions, apply an environment 
Selection procedure to obtain the best solutions P. 

2.3. Randomly list the solutions in P. 
 

Note that newly created candidates who enter the population (either by replacement or by 
addition) instantly participate in the creation of subsequent candidates. This makes it possible 
to achieve rapid convergence towards the optimal Pareto front. 

The extension of DE to MOPs has also given promising results [16]. In what follows, we 
will review the multi-objective DE (MODE) under five aspects, namely adaptive strategies, 
selection operator, diversity control, constraint management and practical applications. 

For adaptive mutation type and MODE parameterization strategies, [17] have proposed a 
self-adaptive MODE (MOSaDE) capable of adaptively selecting the appropriate mutation 
strategies. Later, a new version of the MOSaDE hybrid with learning strategies by objectives 
(OWMOSaDE) was developed by [18], who can adaptively select mutation strategies and 
crossing parameters appropriate for each objective separately. [3] presented a self-adapting 
MODE in which direction information from solutions archived below the current population 
is used in the mutation process. [19] used information from the evolution of solutions along 
each search direction to tailor MODE control parameters. [20] proposed a variant of 
MOEA/D with DE operators (MOEA/DFRRMAB) where rates of mutation operators were 
adaptively determined by a multi-armed bandit scheme. 

For the selection operator in MODE, traditional modes [18], and Pareto differential 
evolution [21] used the one-to-one selection scheme. one, that is, the test vector was allowed 
into the next generation if and only if it could dominate its target solution. Different from this 
scheme, some MODEs preferred to store the new test vectors and then select good solutions 
from the union of test vectors and the original population to build the next population. The 
application of such a scheme is found in the MODE named PDEA proposed by [22], DEMO 
proposed by (Robič & Filipič, 2005), ADEMO proposed by [23], MODEA proposed by [24], 
and the DEMON proposed by [25].  

Regarding the diversity control in MODE, many studies have preferred to adopt the 
Pareto ranking and the overpopulation distance of NSGA-II [26] to truncate the elitist 
archive. Instead of crowding distance, [27] used a measure of diversity entropy of crowding 
in the self-adaptive MODE to preserve the diversity of elite archives. [28] developed a 
measure of diversity based on harmonic distance to maintain the diversity of external 
archives and dominance has been integrated into MODE to ensure the diversity of external 
archives. In addition to metrics for measuring diversity, the multiple populations strategy has 
also been adopted in MODE to maintain diversity. A cooperative MODE (CMODE) with 
multiple populations has been presented by [29], in which each population treated only one 



                A NOVEL TWO-STAGE HYBRID MULTI-OBJECTIVE DIFFERENTIAL EVOLUTION…  159 

Copyright ©2023 ASSA.                                                                                  Adv. in Systems Science and Appl. (2023) 

 

goal. Another version of the multi-population mode has been proposed in [30], in which each 
subpopulation adopted its own mutation strategy and competed for evolutionary resources. 

For the MOP with constraints, [31] incorporated local research based on approximate set 
theory into MODE. [32] developed a new MODE by designing a new constraint 
management method to guide the search for individuals using a number of good infeasible 
solutions. 

For the practical application of the MODE, [33] presented a MODE for the optimization 
of the operation of the pyrolysis of naphtha. [34] presented a MODE incorporating a taboo 
list for chemical engineering applications. [35] Studied the optimization of the functioning of 
the p-xylene oxidation reaction process and developed a MODE with a self-adaptive strategy 
for the generation of test vectors and the control of settings. [36] proposed a MODE with an 
adaptive parameter control strategy and non-dominated ranking for POM of electromagnetic 
problems. [37] proposed an adaptive MODE for the problem of defining the operating point 
with four objectives focusing on the cost of fuel consumption and reduction of emissions. 

The work [38] proposed a DE variant to solve multi-objective optimization problems 
called MyODEMR (Multiple-objective DE with mutation restriction). The algorithm uses the 
concept of Pareto dominance coupled with the inverted generational distance metric to select 
the population for the next generation from a combination of the parent and offspring 
populations. The algorithm also uses a strategy of restriction of the difference vector in the 
DE mutation to improve the convergence characteristics on multimodal fitness landscapes. 
Recently, [39] proposed a multi-goal optimization algorithm that periodically rearranges 
goals based on their conflict status and selects a subset of conflicting goals for further 
processing. The authors used DEMO as the underlying metaheuristic algorithm, and 
implemented the technique of selecting a subset of conflicting goals using an order based on 
the correlation of goals. The resulting method is called α-DEMO, where α is a parameter 
determining the number of conflicting objectives to select. DE has also been used as a core 
optimizer in recently developed decomposition-based MOEAs for multi-objective 
optimization such as [40]. 

3. OPPOSITION BASED LEARNING 

Opposition based learning (OBL) is a new concept of machine learning, inspired by the 
opposing relationship between entities. In 2005, for the first time, the concept of opposition 
was introduced, which has attracted a lot of research efforts over the past decade. A variety 
of soft computer algorithms such as optimization methods, reinforcement learning, artificial 
neural networks, and fuzzy systems have already used the concept of OBL to improve their 
performance. The concept of computational opposition [41] was inspired by the concept of 
opposition in the real world and opposing numbers were simply defined as follows: 

Definition 3.1: (opposite number). [41] Let 𝒙 ∈  [𝒂, 𝒃]  be a real number. Its opposite, 
x


, is defined as follows: 
𝑥෬  = 𝑎 + 𝑏 −  𝑥 (3.1) 

Definition 3.1: (opposite point in space D). [41] Let 𝑥 (𝑥ଵ, . . . , 𝑥஽)  be a point in 
dimensional space 𝐷 and 𝑥௜ ∈  [𝑎௜, 𝑏௜], 𝑖 =  1, 2, . . . , 𝐷. The opposite of 𝑥 is defined by x



(𝑥෬௜,..., 𝑥෬஽)  as follows: 
𝑥෬௜  = 𝑎௜ + 𝑏௜ −  𝑥௜ (3.2) 

In fact, they indicate that to find the unknown optimal solution, the simultaneous search 
for a random direction and its opposite gives a higher chance of finding the promising 
regions. It is reasonable that if the current estimates (assume) are far from the unknown 
optimal solution, the computation of their opposites leads in the opposite direction to the 
unknown optimal solution. Note that the base opposite point is calculated the same as a 
reflected point when it is calculated through the center point ((𝑥ଵ + 𝑥ଶ + ⋯ + 𝑥஽)/2). 
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OBL was introduced as an attempt to increase the rate of learning in EAs. Since evolution 
is a slow process while revolution is a fast process, the simulation of revolution in EAs might 
speed up their convergence. It has also been implemented in many other optimization 
algorithms as mentioned in section 01. Several research works have been conducted in 
utilizing OBL concept and extending the new schemes of OBL to enhance EA algorithms. 
Also, mathematical theorems were derived to demonstrate that opposite candidate solutions 
have higher probability to be closer to an unknown optimal solution than the randomly 
generated candidate solutions. 

In [42], some theorems are mathematically proved to conclude the advantage of using the 
OBL concept. Also, they conducted some experiments by utilizing the OBL concept in the 
framework of EA algorithms to enhance their performance. 

In fact, according to probability theory, 50% of the time, a guess is further from the 
solution than its opposite guess. Therefore, it will generate the opposite individual of the 
current individual, evaluate the fitness of both individuals, and select the better one as a new 
individual which can consequently improve the quality of the search population and 
accelerate convergence. 

The motivation for this work was twofold. First, we wanted to design an efficient 
algorithm for multi-objective optimization, which would use DE for decision space 
exploration in a simple way. Although DE-based algorithms for multi-objective optimization 
have already been proposed in the past, they have either ignored the basic feature of DE of 
comparing each new solution. to its parent, or applied it too strictly for multi-objective 
optimization. In addition, the existing approaches only use the environmental selection 
method of NSGA-II, while our objective was to allow combinations of exploration of the 
decision space to boost the algorithm to select better solutions with a good diversity 
compared to the algorithms proposed in the literature. The second objective is to apply an 
efficient hybridization of the DE-based multi-objective optimization algorithm with other 
training technique in order to reduce the complexity of the compute and that the results are 
precise and simple. Our hybrid approach could help by exploring space. 

4. PROPOSED HYBRID ALGORITHM MODE-OBL 

This section describes the multi-objective differential evolution based on the opposition 
MODE-OBL developed in this study on the basis of the MODE-RMO algorithm [43] (see 
algorithm 2). In MODE-OBL, the candidate potential solutions are processed at initialization 
and the exploration/exploitation capacities during the various optimization processes are 
mainly concerned. OBL can be used in two steps of MODE-OBL. First, at the initialization 
stage in order to arrive at candidate solutions for the most appropriate fit under conditions 
where there is no a priori knowledge about the initial individuals; Second, during the 
implementation of MODE-OBL in order to force the current population to embark on new 
candidate solutions more suitable than current ones. These two steps are called, respectively, 
opposition-based population initialization and opposition-based generation leap. In this way, 
the proposed algorithm can converge faster while maintaining good diversity. Figure 4.2 
shows the overall operational architecture of the proposed algorithm. The majority of works 
have used OBL in the context of mono-objective optimization and recently very few attempts 
are invested to hybridize OBL with multi-objective evolutionary algorithms [44] [45]. Hence 
our approach is inspired to incorporate a two-phase (serial) learning technique into multi-
objective differential evolution based ranking mutation. 

4.1. Multi-Objective Differential Evolution with Ranking-Based Mutation Operator 

In this section, the proposed MODE-RMO algorithm is presented in detail. In MODE-RMO, 
the ranking-based mutation operator is introduced in MODE to improve its performance by 
accelerating the speed of convergence. Therefore, in the next part, we will first describe the 
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ranking-based mutation operator for multi-objective optimization; then MODE-RMO is 
minutely elucidated. 

In nature, good people always hold good information, and they are more likely to be used 
to guide other people. Based on these considerations, [46] proposed a ranking-based 
mutation operator for DE in single-objective optimization, in which parents are selected 
proportionally based on their ranking in the current population. The higher a parent ranks, 
the more they will be selected. The authors incorporated the proposed rank-based mutation 
operator in some DE algorithms, and experimental results indicated that the rank-based 
mutation operator is able to improve the performance of DE algorithms in the optimization 
of one goal. The ranking-based mutation operator was introduced in MODE for MOP. 
However, the challenge of this extension is that the population can be directly sorted from 
best to worst in single objective optimization, while there are many solutions that are not 
dominated among themselves in multi-objective optimization. Whereas the MODE algorithm 
should generate approximate Pareto solutions with both good convergence and good 
propagation, therefore, non-dominated fast sort and saturation distance are incorporated into 
the rank-based mutation operator to treat MOPs. 
4.1.1. Fast sorting not dominated and crowding distance 

The unexpressed rapid sorting and crowding distance is proposed by [47] in the NSGA-II 
algorithm. In the quick sort procedure without markup, for each solution, two entities are 
calculated: 
1) 𝑛௣ : the dominance account, i.e. the number of solutions which dominate the solution 𝑝; 
2) 𝑆௣ : a set of solutions that the solution dominates. All solutions of the first non-dominated 

front will have their dominance count at zero. Now, for each solution 𝑝 with 𝑛௣ = 0, we 
visit each member (𝑞)  of its set 𝑆௣ and reduce its domination count by 1. If for a member 
the domination count becomes zero, we put it in a separate list 𝑄, these members belong 
to the second non-dominated front. Now the above procedure continues with each limb 
and the third front is identified. This process continues until all fronts are identified. 
The crowding distance is used to get an estimate of the density of solutions surrounding a 
particular individual 𝑖 in the population; it calculates the average distance of its two 
neighboring solutions on along each of the goals. The computation of the gathering 
distance requires sorting the population according to each objective function value in an 
increasing order of magnitude. Then, for each objective function, the boundary solutions 
(solutions with the smallest and largest function values) are assigned an infinite distance 
value. All other intermediate solutions are assigned a distance value equal to the absolute 
normalized difference of the function values of two adjacent solutions. This calculation is 
continued with other objective functions. The overall staging distance value is calculated 
as the sum of the individual distance values corresponding to each goal. Each objective 
function is normalized before calculating the crowding distance. 

4.1.2. Ranking assignment and probability of selection 

After obtaining the number of non-naming fronts 𝑖௙௥௢௡௧ and the gathering distance 𝑖௖ௗ for 
each solution 𝑖, we can define a partial order for the whole population. Solution 𝑖 is better 
than solution 𝑗, if one of the two conditions is met: 
(𝑖)  𝑖௙௥௢௡௧  <  𝑗௙௥௢௡௧;  
(𝑖𝑖) 𝑖௙௥௢௡௧  =  𝑗௙௥௢௡௧ 𝑎𝑛𝑑 𝑖௖ௗ >  𝑗௖ௗ 

Now the population can be sorted in ascending order based on the partial order defined 
above. An individual's ranking is assigned as follows: 

𝑅௜ = 𝑁௣ − 1, 𝑖 = 1,2, … , 𝑁௣ (4.1) 
where 𝑁௣ is the size of the population.  
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According to the equation. (4.1), the best individual in the current population will obtain 
the highest rank. After assigning the ranking for each individual, the selection probability 𝑃௜ 

of the 
thi individual is calculated as follows:  

𝑃௜ =
𝑅௜

𝑁௣
, 𝑖 = 1,2, … , 𝑁௣ (4.2) 

After calculating the probability of selecting each individual by the equation. (4.2), the 
mutation operator based on the ranking of DE/rand/1 for multi-objective optimization can be 
presented in step 5 on Algorithm 2, where the individual with a higher ranking will have a 
greater probability of being selected as the base vector or the terminal vector in the mutation 
operator; hence, it is beneficial for the propagation of good information in the population to 
the offspring. In the ranking-based mutation operator for multi-objective optimization, only 
the base vector and the terminal vector are selected based on their selection probabilities, 
while the start vector is selected randomly. Indeed, if the two vectors of the difference vector 
are both chosen from among better vectors, the search step size of the difference vector can 
decrease rapidly and lead to premature convergence [48]. 
4.1.3. Selection operator 

In MODE, the crossover is performed in the same way as in single objective optimization. 
However, the selection needs to be rethought, as the test vector and the target vector are 
often non-dominated over each other. In MODE-RMO, we use the following selection 
operator, which has three steps: 

(1) If the test vector dominates the target vector, use the test vector to replace the target 
vector. 

(2) If the target vector dominates the test vector, the test vector is discarded. 
(3) Otherwise, the test vector is added to the population. 
Thus, at the end of a generation, the total population size is between NP and 2NP. This 

population is truncated for the next step of the algorithm. The truncation process involves 
sorting and rating individuals on the same front with the crowding distance. The truncation 
procedure retains only the best NP vectors in the population. 
 
Algorithm 2 general procedure of MODE-RMO 
Step 1: define the number of generations 𝒈 =  𝟎,  

Randomly initialize the population 𝑷𝒈  =  {𝒙𝟏
𝒈

, 𝒙𝟐
𝒈

, … , 𝒙𝑵𝒑
𝒈

}  
with 𝒙𝒊

𝒈
 =  {𝒙𝒊𝟏

𝒈
, 𝒙𝒊𝟐

𝒈
, … , 𝒙𝒊𝑫

𝒈
} (𝒊 =  𝟏, … , 𝑵𝒑) uniformly distributed in the search space 

Define the mutation scale factor F, the crossbreeding constant CR and the 
maximum number of Maxgen generations. 

Step 2: evaluate the fitness value of each target vector 𝒙𝒊
𝒈. 

Step 3: For each individual vector, perform the following steps from step 4 to step 7. 
Step 4: determine the vector indices selected using the method described in 4.1.2 
Step 5: Use the ranking-based mutation operator to generate a vector 𝒎𝒊

𝒈 ା 𝟏 corresponding to 
the target vector 𝒙𝒊

𝒈 according to equation (5). 
Step 6: Use the crossover operation to generate a test vector 𝒗𝒊

𝒈ା𝟏 for each target vector 𝒙𝒊
𝒈 

according to equation (6). 
Step 7: Evaluate the test vector and use the following selection operation: 

(i) if 𝒗𝒊
𝒈ା𝟏

  dominates  𝒙𝒊
𝒈

, 𝒙𝒊
𝒈ା𝟏

 =  𝒗𝒊
𝒈ା𝟏. 

(ii) if 𝒙𝒊
𝒈 dominates  𝒗𝒊

𝐠ା𝟏, 𝒗𝒊
𝐠ା𝟏 is rejected. 

(iii) if 𝒙𝒊
𝒈 and 𝒗𝒊

𝐠ା𝟏 are not dominated with each other, add 𝒗𝒊
𝐠ା𝟏 to the population. 

Step 8: After step 7, the size of the population varies from Np to 2Np.  
Sorting population based on non-dominated sorting and crowding distance, and 
best individual 𝑵𝒑 survive the next generation. 

Step 9: Set g = g + 1, go back to step 3 until the 𝑴𝒂𝒙𝒈𝒆𝒏 be reached. 
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4.2. Initialization based on opposition learning 

Random initialization, in the absence of a priori knowledge, reduces the chances of sampling 
better regions in population-based algorithms. However, the use of OBL can obtain more 
suitable starting candidates even in the absence of a priori knowledge and increase the 
probability of detecting better regions. OBL is an effective mechanism in the field of 
optimization because of the promising potential to improve the performance of various 
optimization algorithms, including KH [49], DE [50] and PSO [51].  

The Optimization based on the opposition: Let 𝑃 (𝑥ଵ, 𝑥ଶ, . . . , 𝑥஽), a point in a space of 
dimensions 𝐷 with 𝑥௜ ∈  [𝑎௜, 𝑏௜] (𝑖 =  1, 2, . . . , 𝐷), or a candidate solution. Suppose 𝑓 (𝑥)  is 
a fitness function used to measure candidate optimality. According to the definition of the 
opposite point, 𝑃෰ (𝑥෬ଵ, 𝑥෬ଶ, . . . , 𝑥෬஽) is the opposite of 𝑃 (𝑥ଵ, 𝑥ଶ, . . . , 𝑥஽). If 𝑓 (𝑃෰) is better 
than 𝑓 (𝑃), then point 𝑃 can be replaced by 𝑃෰; otherwise, we continue with 𝑃. Therefore, the 
point and its opposite point are evaluated simultaneously to continue with the adjuster [52]. 
Inspired by the idea of [49], we conduct here a new method for initializing MODE with 
OBL, which is different from the survival selection in previous OBL-based algorithms 
(including OBL strategies choose the best 𝑁௣ individuals among the original 𝑁௣ individuals 
and the opposite 𝑁௣ individuals in initialization). The main steps to explain this procedure 
are given as shown in Figure 4.1: 

 
Step 1: Divide the population 𝑃 (𝑁௣) into two parts, the first half of the population 𝑃ଵ is 
generated by a random distribution. 
Step 2: The remaining half of the population 𝑃ଶ is initialized in terms of OBLs, as shown 
in section 4.2: 

𝑃ଶ  =  𝑎௜  +  𝑏௜  −  𝑃ଵ, (4.3) 
where (𝑖 =  1, 2, . . . , 𝐷) 

Step 3: The set 𝑃ଵ ∪ 𝑃ଶ  is restructured as the initial population 𝑁௣. 

 
Fig 4.1. OBL-based initialization strategy in MODE 

The OBL strategy used in our proposed algorithm is different from the traditional OBL 
based algorithm. Regarding initialization, the traditional OBL strategy first initializes the 
population at random, then calculates the opposite population. While the OBL operation in 
our proposed algorithm first divides the population into two parts, then randomly generates 
and calculates the inverse respectively, which can obtain more suitable starting candidates 
when there is no a priori knowledge of the solution. Also, after the above steps in generation 
and opposite calculation, the two subpopulations are made up of one population, which can 
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make the population size unchanged in the optimization process and help the algorithm to 
operate efficiently. 

As for the use of OBL in the evolutionary phase, traditional OBL-based algorithms can 
apply the OBL in the evolutionary phase with a jump rate or a jump probability. However, 
the proposed MODE OBL directly calculates the opposite without the jump rate, which can 
increase the likelihood of effectively detecting better regions and reduce complex setting, 
especially for the real-world problem. This strategy is used to accelerate convergence when 
there is no prior knowledge of solutions, thus achieving better solutions more quickly. 

4.3. Jumping Generation based on opposition 

In order to improve overall convergence and avoid sub-optimal solutions, the OBL technique 
is reapplied to the current population. At this point, if the jump condition is satisfied: 
𝑗௥ 

𝑟𝑎𝑛𝑑( ) ≤ − ቀ
௚

௚೘ೌೣ
ቁ

ଶ

+ 2 ቀ
௚

௚೘ೌೣ
ቁ , (4.4) 

where 𝐺𝑒𝑛 and 𝐺௠௔௫ are the current and maximum generations respectively [45]. The 
corresponding opposition population is calculated by forcing current one to pass to a new 
solution. After that, the fittest 𝑁௣ individuals are selected from the combined population of 
the current population and the opposition as the current population for the next generation. 
Unlike the process of the opposition-based initialization phase, the generation jump 
computes the opposition population dynamically. Instead of using the predefined interval 
limits of the variables [𝐿𝐵௝ , 𝑈𝐵௝], the generation jump calculates the opposite of each 
variable based on the minimum values 𝑀𝑖𝑛௝

௣ and maximum 𝑀𝑎𝑥௝
௉ for this variable in the 

current population. 
𝑋௜,௝

଴,௖௨௥௥௘௡௧ = 𝑀𝑖𝑛௝
௣

+ 𝑀𝑎𝑥௝
௉ − 𝑥௜,௝

௖௨௥௥௘௡௧, 𝑤ℎ𝑒𝑟𝑒 ൫𝑗 = 1, … , 𝐷; 𝑖 = 1, … , 𝑁௣൯ (4.5) 
By remaining within the static limits of the interval of variables, we jump outside the 

already reduced search space and lose knowledge of the current reduced space (converged 
population). Therefore, we calculate opposite points using the current range of variables in 
the population which is, as we search, smaller and smaller than the corresponding initial 
range. 
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Fig 4.2. Flowchart of the proposed hybrid algorithm MODE-OBL 

5. EXPERIMENTAL RESULTS AND COMPARISONS 

Five state-of-the-art algorithms, namely NSGA-II, MOPSO, NSDE, MOEA/D-DE and 
MODE-RMO were chosen for the performance comparison with the proposed MODE-OBL. 
NSGA-II [53] is a popular algorithm in evolutionary multi-objective optimization because it 
has the ability to achieve promising solutions for most MOOPs. This algorithm uses Pareto 
rank and crowding distance as the operators of fitness assignment, binary tournament 
selection, uniform crossover, bit-flip mutation, and parent-offspring archiving. The Non-
Dominated Sorting Differential Evolution (NSDE) [54] is an extension of the Basic 
Differential Evolution solving multi-objective optimization. It adopts the non-dominated 
sorting, ranking, and elitism techniques found in NSGA-II, but the main difference between 
them is that the NSDE uses the differential evolution mutation operator instead of the SBX 
operator. For MOEA/D-DE [55], it is an evolutionary algorithm that decomposes any given 
MOP into a number of single objective subproblems. Each subproblem is simultaneously 
optimized during the evolutionary research process. For the decomposition of MOOP, 
Tchebycheff's approach is used in this algorithm and the difference between MOEA/D-SBX 
and MOEA/D-DE lies in their genetic operators whereby the SBX crossover operator is used 
with a polynomial mutation. for MOEA/D-SBX while MOEA/D-DE uses the DE/rand/1 
crossover with polynomial mutation. Finally, for MOPSO [56], it is extended from the 
particle swarm optimization algorithm (PSO), and it essentially combines the strong 
characteristics of PSO. For fair comparisons, all parameters of the compared algorithms are 
set to recommended values as in their original articles. 
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In the following subsections, the test issues and quality indicators used in our 
comparative experiments are first presented. Then, the experimental parameters adopted in 
this study are provided. In addition, thirty independent tests are performed for each test 
problem in order to avoid the stochastic phenomenon, and the Wilcoxon rank sum test is 
adopted with significance level of 0.05 to compare the results obtained by MODE-OBL and 
the five algorithms compared to determine if the best performing algorithm differs from 
competitors results in a statistically significant way. Where the symbols "+", "-" and "≈" 
indicate that the result is significantly better, significantly worse and statistically similar to 
that obtained by the MODE-OBL, respectively. 

5.1. Test problems 

A total of 12 benchmark test problems were chosen to test the optimization performance of 
the proposed hybrid algorithm MODE-OBL in terms of convergence towards the true Pareto 
front as well as the ability to maintain a set various solution. The test issues used included 
ZDT and DTLZ issues. For test problems, they can have two, three or five objective 
functions and have an evolving number of decision variables. These problems have been 
chosen because they cover different characteristics of multi-objective optimization, namely 
the convex Pareto front, the non-convex Pareto front, the discrete Pareto front, 
multimodality, and non-uniformity of the distribution of solutions. The presence of these 
characteristics may pose challenges to a multi-objective optimization algorithm. 

Table 5.1. Multi-objective testing issues. S (scalability), M (the number of objective functions), K (scalar 
parameter), N (the number of decision variables), SP (separable), NS (non-separable). 

Instance M N Interval Geometry SP/NS U/M 
ZDT1 2 30(S) [0,1]௡ Convex SP U 
ZDT2 2 30(S) [0,1]௡ Concave SP U 
ZDT3 2 30(S) [0,1]௡ Deconnected SP M 
ZDT4 2 30(S) [0,1]௡ × [−5,5]௡ିଵ Convex SP M 
ZDT6 2 30(S) [0,1]௡ Concave SP M 

DTLZ1 3(S) 𝒎 +  𝑲 −  1(𝑆) [0,1]௡ Lineair SP M 
DTLZ2 3(S) 𝒎 +  𝑲 −  1(𝑆) [0,1]௡ Concave SP U 
DTLZ3 3(S) 𝒎 +  𝑲 −  1(𝑆) [0,1]௡ Concave SP M 
DTLZ4 3(S) 𝒎 +  𝑲 −  1(𝑆) [0,1]௡ Concave SP U 
DTLZ5 3(S) 𝒎 +  𝑲 −  1(𝑆) [0,1]௡ Degenerated NS U 
DTLZ6 3(S) 𝒎 +  𝑲 −  1(𝑆) [0,1]௡ Degenerated NS U 
DTLZ7 3(S) 𝒎 +  𝑲 −  1(𝑆) [0,1]௡ Deconnected SP M 

5.2. Performance indicators 

In our experimental study, in order to make a fair comparison of the different optimization 
algorithms, performance measures relevant and applicable to the optimization objectives of 
convergence and distribution must be used. Two widely used measures are chosen to 
evaluate the performance of each algorithm, which are called the generational distance [57], 
and the inverted generational distance (IGD) [58]. GD and IGD can effectively measure the 
convergence and diversity of the obtained solutions, respectively. Convergence describes the 
degree of approximation of the result obtained by the algorithm to the true Pareto front (PF). 
The stronger the convergence of the algorithm, the closer the set of solutions is to the true 
optimal solution and the more precise the result. The distribution describes the distribution 
characteristics of the result obtained in the objective space. On the one hand, the results 
should be distributed as much as possible over the entire PF, and on the other hand, the 
results should be distributed as evenly as possible. The stronger the distribution of the 
algorithm, the better the overall exploration capacity of the algorithm. 
5.2.1. Generational distance (GD) 

Generational distance (GD) is a unary performance indicator that is defined as: 
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𝐺𝐷 = ඨ
෌ 𝑑(𝑃௜

∗, 𝑃)௜
ଶே

௜ୀଵ

𝑁
 , (5.1) 

where 𝑁 is the number of solutions in 𝑃𝐹∗, 𝑝 ∈  𝑃𝐹, 𝑝∗ ∈  𝑃𝐹∗ and 𝑑(𝑝∗, 𝑝)௜ the minimum 
Euclidean distance in the objective space between 𝑝∗ and 𝑝 for each member 𝑖. GD 
illustrates the convergence capacity of the algorithm by measuring the convergence between 
the optimal Pareto front and the evolved Pareto front. Thus, a lower value of GD shows that 
the evolved Pareto front is closer to the optimal Pareto front. This indicator is a 
representative metric that provides a quantitative measure of the multi-objective optimization 
convergence goal. 
5.1.2. Inverted generational distance (IGD): 

IGD is a unary indicator by which the distance of each solution in the optimal Pareto front to 
the obtained Pareto front is calculated. Let *P  be a set of solutions uniformly distributed in 
objective space along the Pareto front. P  is an approximation of the PF, which is obtained 
by the algorithm. IGD is described as: 

𝐼𝐺𝐷(𝑃, 𝑃∗) =
෌ 𝑑𝑖𝑠𝑡(𝑃௜

∗, 𝑃)
௜ୀଵ

|௉∗|

|𝑃∗|
 , (5.2) 

where dist(𝑃௜
∗, 𝑃) is the Euclidean distance between a point 𝑥∗ ∈ 𝑃∗ and its nearest neighbor 

in 𝑃, and |𝑃∗| is the cardinality of 𝑃∗. We can see from the definition of IGD that for a large 
|𝑃∗|, it can cover approximately the entire Pareto front, which is another aspect of the metric 
in terms of diversity. 

5.3. Results 

For the other algorithms compared, their parameter settings used in this study followed those 
used in their original studies. The experimental settings and overall parameters are 
summarized in Table 5.2. The comparison was made to examine their optimization 
performance in the test problems described above. All algorithms were implemented in 
MATLAB and run on an Intel® Core ™ i3 2.53 GHz computer with 6 GB memory capacity. 

Table 5.2. Parameter values used in this comparison 
Parameter Settings Parameter values 

Population size for all algorithms 
100 for problems with 2 objectives 
300 for problems with 3 objectives 
500 for problems with 5 objectives 

Stop criterion 
50,000 evaluations function with 2 objectives 

150,000 evaluations function with 3 goals 
250,000 evaluations fonction with 5 goals 

Number of decision variables for ZDT problems 300 for ZDT1, ZDT2 and ZDT3, and 100 for ZDT4 and ZDT6 

Number of decision variables for DTLZ problems 
12 for DTLZ1 and DTLZ3, and 120 for all the other problems 

DTLZ 
Number of independent executions 30 for each algorithm 

Mutation rate 1/n (where 𝑛 is the number of decision variables) 
Crossover rate for NSGA-II and NSDE 0.8 

Mutation scale factor for NSDE 0.5 
Neighborhood size for MOEA/D algorithms 20 

Inertia weight for the MOPSO algorithm 0.5 
(𝐶ଵ, 𝐶ଶ) coéfficients for MOPSO algorithm 𝐶ଵ = 1, 𝐶ଶ = 2 

Comparative studies were conducted to evaluate the performance of the six algorithms as 
part of a comprehensive suite of benchmark test functions. The simulation results in terms of 
measurement of the mean and standard deviation values of the generational distance (GD) 
and the inverted generational distance (IGD) over 30 simulation cycles are presented in 
Tables 5.3, 5.4 and 5.5. The parentheses next to the test problems indicate the number of 
goals (M) and decision variables (D) for the problems. 
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ZDT test problems [59] are a set of simple bi-objective optimization problems that are 
scalable in the number of decision variables and have different characteristics in the Pareto 
optimal front such as the convexity, concavity, discontinuity, local optimality and non-
uniformity. Since most evolutionary algorithms are able to solve ZDT problems without 
difficulty, the number of decision variables was set at ten times its original parameters in this 
study. This would then pose greater challenges to the algorithms due to a larger search space. 
The results indicate that MODE-OBL has the best overall performance. A notable 
achievement of MODE-OBL is its ability to achieve convergence for ZDT4 when all other 
algorithms cannot for this problem. The ZDT4 problem is an extremely multimodal problem 
with the presence of many local optima, and so it is likely that the other algorithms have had 
difficulty being trapped in the local optima. The good overall performance obtained by 
MODE-OBL can be attributed to the complementary effects of DE based on opposition. 

Table 5.3. Results obtained by the algorithms for ZDT problems 
Test problem Algorithm IGD GD 

ZDT1(2,300) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.118 (7.5e-03) - 
0.072 (8.9e-03) - 
0.716 (1.9e-01) - 
0.339 (4.4e-02) - 
0.048 (1.1e-03) - 
0.047 (6.8e-04) 

0.066 (3.1e-03) - 
0.488 (1.5e-01) - 
0.286 (4.9e-02) - 
0.189 (4.5e-02) - 
0.054 (3.3e-03) - 
0.052 (3.1e-04) 

ZDT2(2,300) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.079 (1.5e-02) - 
0.073 (1.8e-03) - 
0.060 (2.2e-03) ≈ 
0.099 (2.9e-03) - 
0.232 (6.8e-02) - 
0.059 (1.0e-02) 

0.366 (1.9e-02) - 
0.652 (7.1e-02) - 
0.400 (2.2e-02) - 
2.889 (1.1e-01) - 
1.594 (2.1e-01) - 
0.339 (1.8e-02) 

ZDT3(2,300) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.447 (2.3e-02) + 
0.587 (7.1e-02) - 
0.810 (1.2e-01) - 
0.669 (2.6e-01) - 
0.454 (8.2e-02) - 
0.429 (5.4e-02) 

0.507 (7.5e-01) - 
0.714 (4.9e-01) - 
0.870 (1.2e-01) - 
0.402 (3.8e-01) - 
0.859 (1.4e-01) - 
0.283 (3.8e-03) 

ZDT4(2,100) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.053 (4.2e-03) - 
0.076 (4.6e-04) - 
0.067 (1.2e-03) - 
0.399 (2.0e-02) - 
0.067 (7.3e-03) - 
0.048 (7.0e-04) 

0.011 (1.3e-03) - 
0.347 (2.0e-02) - 
0.021 (2.6e-03) - 
0.742 (1.0e-05) - 
0.024 (5.0e-03) - 
0.006 (3.8e-05) 

ZDT6(2,100) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.034 (1.1e-03) ≈ 
0.047 (4.1e-04) - 
0.090 (1.9e-02) - 
0.321 (5.5e-02) - 
0.034 (6.3e-04) + 
0.042 (6.4e-04) 

0.101 (1.2e-02) - 
0.143 (6.4e-03) - 
0.087 (2.9e-03) - 
1.156 (3.3e-01) - 
0.068 (1.5e-03) + 
0.108 (9.8e-03) 

The suite of DTLZ problems created by [2] can be extended to any number of objectives 
and decision variables. Therefore, for this study, the DTLZ problems consisted of three and 
five objective functions. The number of decision variables in DTLZ1 and DTLZ3 was fixed 
at 12 because they are highly multimodal problems and therefore more difficult. For the 
other DTLZ problems, they are generally easier to solve, so the number of decision variables 
has been set at 120 instead. For the case of DTLZ problems with three objective functions, 
MODE-OBL achieves competitive performances compared to the other algorithms of this 
study. Based on the simulation results, MODE-OBL achieves the lowest IGD and GD values 
or approaches the best values for most DTLZ problems. However, for the case of DTLZ5 
and DTLZ6, MODE-OBL did not perform as well compared to other algorithms. For 
DTLZ5, we observe that the NSGA-II algorithm which incorporates the use of the SBX 
operator as well as MOPSO gives better results compared to algorithms with the DE 
operator. This suggests that using the DE operator may not be as powerful in solving 
degenerate Pareto front problems. 
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In DTLZ problems with five objective functions, the results demonstrate that MODE-
OBL achieves the best overall performance for DTLZ1, DTLZ3 and DTLZ7 when opposed 
to all the algorithms compared. For DTLZ2, MODE-OBL reaches the lowest IGD value but 
not for the GD metric. For DTLZ4, DTLZ5 and DTLZ6, we observe that the decomposition-
based algorithm generally performs better in terms of better IGD and GD values than the 
others for these three problems. This demonstrates the better ability of decomposition-based 
algorithms to solve multi-objective problems compared to domination-based algorithms. 
This is attributed to the fact that algorithms based on decomposition allow a better selection 
of promising solutions by using aggregated fitness values. For the other dominance-based 
algorithms in this study, dominance behavior between solutions must be determined before 
deciding which solutions are superior. However, as the number of objective functions 
increases, dominance behavior will be weakened. Therefore, it will be more difficult for 
domination-based algorithms to select the best solutions in a higher objective space. 

We observe that MODE-OBL generally shows better performance for DTLZ1, DTLZ3 
and DTLZ7, and competitive performance for DTLZ2, with three and five objective 
functions. DTLZ1 and DTLZ3 are highly multimodal problems, and the success of MODE-
OBL in dealing with these problems is probably attributed to the strong exploration 
capabilities inherent in its DE operator which allows the algorithm to escape the optimal 
local. As with DTLZ2, the opposition-based generation jump phase in MODE-OBL helps 
produce adequate selection pressure towards the large spherical Pareto front in the large 
objective domain. The good performance shown by MODE-OBL for DTLZ7 could also be 
attributed to the strong exploratory nature of its DE operator complemented by the ranking-
based mutation operator (RMO) as this helps the algorithm to discover distributed 
subpopulations. in all disconnected Pareto-optimal regions. Moreover, the environmental 
selection method used is also effective in keeping the solutions found in Pareto-optimal 
regions disconnected. These factors may explain why MODE-OBL is able to handle the 
DTLZ7 problem well. 

Table 5.4. Results obtained by algorithms for DTLZ problems (3 objectives) 
Test problem Algorithm IGD GD 

DTLZ1(3,12) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.200 (2.3e-02) - 
0.198 (3.0e-02) - 
0.254 (7.1e-02) - 
0.764 (9.1e-02) - 
0.439 (2.8e-02) - 
0.151 (4.9e-03) 

2.802 (9.8e-01) - 
2.711 (9.2e-02) + 
4.069 (3.0e-01) - 
3.147 (1.3e-01) - 
3.716 (1.6e+00) - 
2.431 (5.6e-02) 

DTLZ2(3,120) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.201 (1.5e-01) - 
0.178 (8.4e-04) - 

0.2719 (5.1e-01) - 
0.153 (1.1e-03) + 
0.254 (4.3e-02) - 
0.154 (8.8e-03) 

0.012 (1.9e-03) - 
0.006 (1.4e-05) + 
2.130 (5.7e+00) - 
0.049 (1.4e-02) - 
0.742 (5.8e-05) - 
0.111 (2.4e-02) 

DTLZ3(3,12) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.766 (4.0e-02) - 
1.288 (4.1e-01) - 
0.948 (2.1e-02) - 
0.519 (1.0e-01) + 
0.877 (3.5e-01) - 
0.565 (1.2e-01) 

0.3013 (2.1e-01) - 
0.2931 (3.7e-02) + 
1.0623 (6.5e-01) - 
0.4865 (2.4e-02) - 
0.8574 (9.2e-01) - 
0.3021 (5.8e-01) 

DTLZ4(3,120) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.146 (1.5e-03) + 
0.394 (2.9e-02) - 
0.463 (8.5e-02) - 
0.180 (3.7e-02) - 
0.185 (8.2e-05) - 
0.158 (6.9e-03) 

0.387 (5.0e-04) - 
0.368 (1.1e-02) ≈ 
2.648 (4.1e-01) - 
0.391 (2.1e-02) - 
0.431 (5.2e-02) - 
0.368 (8.2e-03) 

DTLZ5(3,120) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.100 (1.5e-03) + 
0.177 (5.7e-03) - 
0.537 (6.8e-03) - 
0.099 (4.6e-06) + 
0.231 (1.6e-02) - 
0.124 (2.7e-03) 

0.253 (5.3e-03) - 
0.046 (3.2e-03) + 
0.134 (6.6e-01) - 
0.026 (1.5e-02) + 
0.668 (8.1e-01) - 
0.211 (4.7e-03) 
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DTLZ6(3,120) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.413 (7.1e-02) - 
9.086 (4.8e+00) - 
0.201 (4.1e-02) - 
0.112 (3.1e-03) - 
0.113 (2.5e-03) - 
0.099 (2.9e-03) 

1.874 (6.3e-01) - 
1.272 (3.6e-02) - 
2.063 (6.1e-02) - 
0.246 (1.3e-03) + 
1.346 (5.5e-02) - 
1.080 (7.3e-03) 

DTLZ7(3,120) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

2.547 (2.1e-01) + 
11.18 (9.6e+00) - 
18.07 (2.5e+02) - 
6.061 (6.1e-01) - 
7.645 (1.1e+00) - 
2.614 (7.7e-02) 

0.813 (3.8e-01) - 
0.791 (4.2e-02) - 
0.955 (2.1e-01) - 
0.744 (6.4e-01) - 
0.669 (8.6e-02) - 
0.668 (2.2e-03) 

Table 5.5. Results obtained by algorithms for DTLZ problems (5 objectives) 
Test problem Algorithm IGD GD 

DTLZ1(5,12) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

1.355 (2.6e-02) - 
8.413 (3.7e+00) - 
1.686 (1.1e-01) - 
1.344 (5.0e-06) - 
1.567 (5.7e-02) - 
1.227 (3.8e-03) 

1.814 (1.6e-02) - 
3.297 (1.0e+00) - 
2.278 (3.2e-01) - 
1.745 (1.4e-02) - 
1.793 (2.2e-02) - 
1.726 (2.5e-02) + 

DTLZ2(5,120) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

0.410 (5.9e-02) - 
1.397 (5.0e-05) - 
3.561 (3.2e-02) - 
0.257 (1.1e-03) - 
0.658 (7.4e-02) - 
0.224 (4.7e-03) 

0.194 (7.2e-01) - 
0.438 (3.2e-02) - 
4.152 (4.2e-01) - 
0.156 (1.2e-03) + 
0.306 (4.6e-02) - 
0.218 (2.1e-02) - 

DTLZ3(5,12) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

1.548 (5.9e-02) - 
3.157 (2.5e+00) - 
4.699 (2.1e+00) - 
0.881 (1.1e-01) - 
1.978 (4.1e-01) - 
0.682 (2.1e-01) 

2.852 (4.4e-03) - 
4.043 (8.7e-02) - 
2.973 (2.2e+00) - 
1.663 (2.1e-02) + 
2.528 (5.8e-02) - 
1.906 (4.5e-03) - 

DTLZ4(5,120) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

2.245 (8.9e-03) - 
4.398 (2.2e-02) - 
6.544 (3.9e-02) - 
2.224 (1.4e-03) + 
2.365 (1.1e-02) - 
2.330 (1.6e-02) - 

0.956 (1.4e-02) - 
1.030 (8.0e-02) - 
3.680 (8.7e-01) - 
0.899 (2.0e-02) + 
3.258 (3.9e-01) - 
1.269 (4.4e-02) - 

DTLZ5(5,120) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

1.267 (1.4e-02) - 
3.441 (4.7e-02) - 
2.811 (4.3e-02) - 
1.169 (5.0e-03) + 
1.345 (2.8e-02) - 
1.219 (1.0e-02) - 

0.475 (1.2e-01) - 
8.762 (5e+05) - 
4.75 (1.4e-01) - 

0.097 (5.7e-02) + 
1.682 (5.7e+01) - 
1.104 (2.0e-03) - 

DTLZ6(5,120) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

2.2e+09 (6e+09) - 
5.9e+10 (3e+10) - 
2.946 (2.7e+01) - 
1.061 (5.5e-02) - 
1.402 (8.5e-02) - 
0.927 (2.8e-03) 

15.735 (1.1e+00) - 
17.512 (3.7e+01) - 
17.23 (1.3e+02) - 
4.98 (2.1e+00) + 

12.887 (3.2e+00) - 
9.216 (6.2e+00) - 

DTLZ7(5,120) 

NSGA-II 
MOPSO 
NSDE 

MOEA/D-DE 
MODE-RMO 
MODE-OBL 

1.498 (1.7e-03) - 
1.463 (4.3e-01) - 
12.02 (2.7e+01) - 
1.320 (2.3e-02) - 
1.946 (4.3e-01) - 
1.053 (4.0e-03) 

2.565 (4.6e-01) - 
7.127 (3.8e+02) - 
7.982 (2.2e-03) - 
3.287 (6.8e-00) - 
3.889 (1.4e+01) - 
1.996 (5.2e-01) 

6. APPLICATION ON PORTFOLIO OPTIMIZATION PROBLEM 

Computational finance is an emerging application field of metaheuristic algorithms. These 
optimization methods are becoming the solving approach alternative when dealing with 
realistic versions of several decision-making problems in finance. 

The portfolio selection problem can be defined as the optimal allocation of wealth among 
a finite number of assets that follows careful processing of all available information about 
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both investors and markets. Markowitz’s mean-variance model is by far the most popular 
procedure in asset allocation [60]. 

There are a few key concepts in portfolio optimization. First, reward and risk are 
measured by expected return and variance of a portfolio. Expected return is calculated based 
on historical performance of an asset, and variance is a measure of the dispersion of returns. 
Second, investors are exposed to two types of risk: unsystematic risk and systematic risk. 
Unsystematic risk is an asset’s intrinsic risk which can be diversified away by owning a large 
number of assets. These risks do not present enough information about the overall risk of the 
entire portfolio. Systematic risk, or the portfolio risk, is the risk generally associated with the 
market which cannot be eliminated. Third, the covariance between different asset returns 
gives the variability or risk of a portfolio. Therefore, a well-diversified portfolio contains 
assets that have little or negative correlations [61]. 

EAs work with a set of solutions, called population. This feature is particularly suitable 
for solving multi-objective problems, as it enables approximating the efficient frontier in a 
single run. As a result, multi-objective evolutionary algorithms (MOEAs) have received 
growing attention to financial applications [62]. In fact, portfolio optimization was one of the 
first successful applications of MOEAs in economics and finance.  

Increasing complexity of practical applications has led researchers to develop heuristic 
procedures for solving their portfolio optimization problems. These techniques require less 
domain information to be considered than the standard gradient-based mathematical 
programming methods do. Moreover, they guarantee satisfactory approximations to solutions 
in a fair computational time even when they deal with non-convexity, discontinuity, and 
integer decision variables. The approaches that have been proposed in the soft-computing 
literature can be categorized into the following two groups. On one hand, single objective 
methods optimize a weighted sum of the portfolio objectives. On the other hand, multi-
objective evolutionary algorithms (MOEAs) attempt to tackle the allocation problem directly 
in its multi-objective form by simultaneously optimizing risk and reward. In the first case, 
the complete set of risk-return profiles is obtained by varying a parameter that represents the 
risk aversion of the investor [63] [64]. In the second case, the complete efficient frontier is 
represented in a single run [65] [66]. Both categories pay great attention to encoding types 
and constraint–handling techniques [67]. 

While single objective optimization methods consider either a minimal risk for a given 
return or a maximum risk for a given expected return or an objective function that weights 
the two goals and thus have to be run several times with the respective weights [68], multi-
objective optimization methods find a set of Pareto solutions, while balancing two or more 
objective functions simultaneously. 

6.1. Problem formulation 

The key to achieving investors’ objectives is to provide an optimal portfolio strategy which 
shows investors how much to invest in each asset in a given portfolio. Therefore, the 
decision variable of portfolio optimization problems is the asset weight vector 

 Tnxxxx ,..., 21 with ix as the weight of asset i  in the portfolio. The expected return for each 

asset in the portfolio is expressed in the vector form  Tnpppp ,..., 21 with ip as the mean 

return of asset i . The portfolio expected return is the weighted average of individual asset 
return (Eq 6.2) Variance and covariance of individual asset are characterized by a variance-

covariance matrix 
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, where ii , is the variance of asset i  and ji ,  is the 

covariance between asset i  and asset j . The portfolio variance is defined in Eq (6.1). 



172                         N. BOUKHARI, M. A. NEMMICH, F. DEBBAT, N. MONMARCHÉ, M. SLIMANE 

Copyright ©0000 ASSA                                                                                    Adv. in Systems Science and Appl. 
(0000) 

The mathematical representation of portfolio optimization was introduced by Markowitz 
in the fifties and he was rewarded with a Nobel Prize in Economics in 1990 [69]. The 
Markowitz model assumes the investors would like to maximize the return under certain risk 
level or minimize the risk with certain return level and this model makes use of the mean and 
variance of normalized historical asset price to measure the expected portfolio return and risk 
[70].The model can be expressed as a bi-objective problem and formulated as following: 

𝑀𝑖𝑛: Risk 𝜎ଶ = ෍ ෍ 𝑤௜𝑤௝𝜎௜௝

௡

௝ୀଵ

௡

௜ୀଵ

 (6.1) 

𝑀𝑎𝑥: Return r௣ = ෍ ෍ 𝑤௜𝑟௜

௡

௝ୀଵ

௡

௜ୀଵ

 (6.2) 

subject to 

෍ 𝑤௜ = 1

௡

௜ୀଵ

; 𝑤௜ ≥ 0, (6.3) 

where 𝑛 is the number of assets in the portfolio and the dimension of the problem, 𝑤௜ is the 
weight of 𝑖௧௛ asset. 𝜎ଶ stands for the portfolio risk and 𝜎௜௝ is the covariance between asset 𝑖 
and asset 𝑗. If 𝑖 = 𝑗, 𝜎௜௝  is just the variance of that particular asset. 𝑟௣ is the portfolio return, 
while 𝑟௜ is the individual return of asset 𝑖. 

6.2. Experimental Settings and dataset 

All the experiments are conducted using standard Markowitz (mean-variance) model. 100 
days’ closing prices of 100 and 500 stocks were downloaded and used as the historical stock 
data in the simulation and used as the test data used in the simulation. Stocks’ monthly 
returns and close prices are picked from [71]. A monthly return calculation is formulated as: 

𝑀௧ =  ln
௉೟

௉೟షభ
; Where, 𝑃(𝑡) is the closing price, 𝑃(𝑡 − 1) is the closing price in the day before 

and 𝑀(𝑡) is the monthly return. Experiments are conducted on 100 and 500 stocks. Thus, the 
chromosome size is 100 and 500, respectively. And the number of function evaluation is 
100000 and 300000 respectively for all the three algorithms and all algorithms are run 25 
times with random initialization.  

Except MODE-OBL, two other multi-objective evolutionary algorithms are also tested on 
this portfolio optimization problem for comparison due to their superiority respected to GD 
and IGD metrics in different benchmarks problems tested previously. For real-coded NSGA-
II, a population size of 100 is used, crossover probability of 0.9 and mutation probability of 
1/n , where n is the number of decision variables, distribution indexes for crossover and 
mutation operators as presented in [72]. MOEA/D-DE uses a population size of 100, F is set 
to 0.5 and CR is set to 0.1.  

To check the robustness of the results, 25 simulations for each algorithm and for each test 
problem are used. The algorithms are implemented in MATLAB R2019b and the 
experiments are carried out on a 2.6 GHz Intel Core i5 7300U laptop with 8 GB RAM. 

6.3. Experimental Results 

A set of non-dominated solutions generated by MOEAs can be measured with different 
performance metrics available in the literature. In case, we don't have information regarding 
true Pareto front, then coefficient of variation measure 𝐶𝑉 defined as follow (Eq 6.4) is used: 

𝐶𝑉 =
𝑚

𝜎
= 𝑚𝑒𝑎𝑛 (𝐽(𝑥), 𝑥 ∈ 𝑋 | ඥ𝑉𝑎𝑟{𝐽(𝑥), 𝑥 ∈ 𝑋} (6.4) 

which allows to determine how much volatility, or risk, is assumed in comparison to the 
amount of expected return from investments and spacing metric (SP) suggested by [73] is 
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calculated with a relative distance measure between consecutive solutions in the obtained 
non-dominated set, as follows: 

𝑆𝑃 = ඨ
1

|𝑆| − 1
෍൫𝑑̅ − 𝑑௜൯

ଶ

|ௌ|

௜ୀଵ

, (6.5) 

where 𝑑௜ = 𝑚𝑖𝑛(௦೔,௦ೕ)∈ௌ,   ௦೔ಯ௦ೕ
 ฮ𝐹(𝑠௜) − 𝐹(𝑠௝)ฮ

ଵ
is the 𝑙ଵ distance between a point 𝑠௜ ∈ 𝑆 and the 

closest point of the Pareto front approximation produced by the same algorithm, and 𝑑̅ the 
mean of the 𝑑௜. 

From the results obtained in Table 6.1, it is observed that MODE-OBL obtains better 
pareto-optimal fronts with better convergence and diversity comparing with NSGA-II and 
MOEA/D-DE on 100-stocks problem. The differences among various algorithms are small 
compared with the results obtained in terms of distribution metric with slight superiority of 
MODE-OBL. Note that MOEA/D-DE showed good performance when optimizing the 500-
stock portfolio indicating that multi-objective algorithm-based decomposition approach has a 
stronger ability in solving large-scale optimization problem. 

A better insight into the nature of the found solutions can be obtained by analyzing Fig 
6.1 and Fig 6.2. The plots presented in these figures show the efficient frontiers. As can been 
seen from these plots, the best results (Risk/Return) are generated by MOEA/D-DE in 500-
stocks and quasi-consistent with the results obtained by MODE-OBL in 100-stocks. 
Although NSGAII performs the worst, it can still generate distributed and satisfactory fronts. 
The experiments conducted on portfolio optimization problems with 100 and 500 stocks 
show that the Multi-objective differential algorithm based ranking mutation combined with 
opposition-based learning presented an excellent performance comparing with other two 
multi-objective evolutionary algorithms and was a potential solution for this kind of 
problems. 

Table 6.1. The comparison results of algorithms MODE-OBL, MOEA/D-DE, NSGA-II 
Dataset Metrics Statistics MODE-OBL MOEA/D-DE NSGA-II 

100 stocks 

Risk 
Best 
Avg 

0.0281e-04(1.0019) 
0.0742e-04(1.0093) 

0.0697e-04(1.0017) 
0.0665e-04(1.0087) 

0.1351e-04(1.0016) 
0.6894e-04(1.0083) 

Return 
Best 
Avg 

1.1056(2.0036e-04) 
1.0093 (0.0742e-04) 

1.1036(2.004e-04) 
1.0087(0.0665e-04) 

1.1036(2.004e-04) 
1.0083(0.0689e-04) 

Coefficient 
of variation 

(CV) 

Best 
Worst 
Avg 

6.7795e-03 
1.4993e-02 
1.1725e-02 

2.5005e-01 
2.9526e-01 
2.7482e-01 

5.2053e-01 
5.6592e-01 
5.4216e-01 

Spacing 
metric (SP) 

Best 
Worst 
Avg 

6.9662e-06 
1.4376e-05 
1.0603e-05 

8.9935e-06 
1.9869e-05 
1.2816e-05 

6.6883e-05 
1.4525e-04 
9.8367e-05 

500 stocks 

Risk 
Best 
Avg 

0.2107e-04(1.0023) 
0.4890e-04(1.0053) 

0.1890e04(1.0025) 
0.5156e-04(1.0057) 

0.3772e-04(1.0024) 
0.6135e-04 (1.0043) 

Return 
Best 
Avg 

1.0067(1.0956e-04) 
1.0053(0.4890e-04) 

1.0071(1.0253e-04) 
1.0057(0.5156e-04) 

1.0051(1.2715 e-04) 
1.0043(0.6135e-04) 

Coefficient 
of variation 

(CV) 

Best 
Worst 
Avg 

1.3851e-02 
3.5104e-01 
2.8757e-01 

1.5036e-02 
3.4263e-01 
2.6981e-01 

5.6942e-01 
8.9172e-01 
6.7819e-01 

Spacing 
metric (SP) 

Best 
Worst 
Avg 

2.1776e-04 
2.5627e-04 
2.3606e-04 

1.4915e-04 
5.1583e-04 
2.7524e-04 

1.3038e-02 
4.1017e-02 
2.9133e-02 
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Fig 6.1 pareto frontier generated of 100 stocks problem 

 

 
Fig. 6.2. Pareto frontier generated of 500 stocks problem 

This work applied Multi-objective differential algorithm based ranking mutation 
combined with opposition-based learning to solve the large-scale portfolio optimization 
problems. The experiments conducted on portfolio optimization problems with 100 and 500 
stocks show that the proposed algorithm presented a better performance comparing with 
other two multi-objective evolutionary algorithms and was a potential solution for this kind 
of problems. 

7. CONCLUSION 

This paper proposed a hybridized multi-objective differential evolution variant based on 
opposition-based learning. The proposed algorithm MODE-OBL inherited two operators 
from the original MODE: selection count dominance and crowding distance. Ranking based 
mutation from MODE-RMO is used to accelerate the convergence rate, then a new generated 
population passed to the second stage in order to maintain diversity of solution by the 
opposition-based learning technique. Experiments on mathematical benchmark functions and 
financial portfolio optimization problem were performed to make an extensive comparison of 
MODE-OBL with a series of multi-objective algorithms and MODE-OBL was considered to 
be competitive with other methods. However, there is still a lot of room for improvement in 
the improvement aspect of MODE, and this paper aims to explore feasible ways to improve 
the basic MODE algorithm to handle a wide range of MOP. 

Future research will be directed to applying others selection techniques and verifying the 
MODE-OBL on more real-world problems such as telecommunication network design. 
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