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1. INTRODUCTION 

In the case of conformity decision-making of agents that perform binary choice between 

“passivity” and “activity,” the associated control problems involve the models of collective 

behavior based on classical Granovetter’s model [1] (see the surveys in [2, 3]). Within this 

model, each agent is characterized by his threshold, a number from the interval [0; 1], in the 

following way. He decides to be active if the fraction of active agents in his neighborhood 

exceeds the threshold; otherwise, the agent prefers passivity. The dynamics of the fraction of 

active agents depends on its initial value and the distribution function of the agents’ thresholds. 

Hence, a goal-directed (exogenous) change in the number of agents at the initial and/or 

subsequent moments affects the behavioral dynamics of the whole group. 

Consider the collective behavior of agents forming a mob [4]. In this case, control consists in 

choosing a fraction of always active agents to-be-introduced to the mob (the so-called 

“provokers”). The problems belonging to this class can be classified by several bases such as 

discrete-time setting or continuous-time setting, single or multiple application of the control 

actions (constant controls and time-varying controls, respectively), and open-loop or feedback 

control. 

The discrete-time optimal choice problem for a single constant control applied by a control 

subject (Principal) to a mob was formulated and solved in [4]. In [5], this problem was 

generalized to the case of multiple open-loop controls in the discrete-time setting. 

The present paper is dedicated to the continuous-time mob control models. Further exposition 

follows the paper [6], in particular, the proofs of Propositions 2-6 can be taken there.  

The mob model proper is imported from [7, 8], actually representing a generalization of 

Granovetter’s model to the continuous-time case as follows. Suppose that we know the initial 

fraction x0  [0; 1] of active agents at the zero moment. Then the evolution of this fraction x(t) 

in the continuous time t ≥ 0 is governed by the equation 

 ( )x F x x   ,       (1) 

where F(∙) is a known continuous function possessing the properties of a distribution function,  

F(0) = 0 and F(1) = 1. Actually, this is the distribution function of the agents’ thresholds [2, 4]. 

Similar to [4, 5], by applying a control action u(t)   [0; 1] (introducing provokers), we obtain 

the controlled dynamic system  

 ( ) (1 ( )) ( )x u t u t F x x     .     (2) 

This paper is organized in the following way. Section 2 studies the reachability set and the 

monotonicity of the system trajectories in the control action. Next, section 3 is focused on the 

case of constant controls according to the above classification. Section 4 considers the models 

                                                 
1
 This work was partially supported by RSF grant 16-19-10609. 

 



 

47                                      I.N. Barabanov and D.A. Novikov: Dynamic Models of Mob Excitation Control 

 

where control excites the whole mob. And finally, section 5 deals with the case of feedback 

control. 

2. REACHABILITY SET AND MONOTONICITY 

First, we formulate a lemma required for further analysis. Consider functions 
1( , )G x t  and 

2 ( , )G x t : 0[ , )R t R    that are continuously differentiable with respect to x  and continuous 

in t . By assumption, the functions 
1G  and 2G  are such that the solutions to the Cauchy problems 

for the differential equations ( , )ix G x t , 1,2i  , with initial conditions 0 0 0( , ),t x x R , admit 

infinite extension in t . Denote by 0 0( ,( , )), 1,2ix t t x i  , the solutions of the corresponding 

Cauchy problems. 

Lemma [6]. Let 0 1 2, ( , ) ( , )x R t t G x t G x t      . Then 0 1 0 0( ,( , ))t t x t t x    

2 0 0( , ( , ))x t t x . 

Note that, for validity of this lemma, one should not consider the inequality 

1 2( , ) ( , )G x t G x t  for all x R . It suffices to take the union of the reachability sets of the 

equations ( , )ix G x t , 1,2i  , with the chosen initial conditions 0 0( , )t x . 

Denote by xt(u) the fraction of active agents at the moment t under the control action u(∙). The 

right-hand side of the expression (1) increases monotonically in u  for each t  and ∀ x ∈ [0; 1]: 

F(x) ≤ 1. Hence, we have the following result. 

Proposition 1. Let the function F(x) be such that F(x) < 1 for x ∈ [0; 1). If 

0 1 2( ) ( )t t u t u t     and x0(u1) = x0(u2) ( 0 1x  ), then 0t t  : xt(u1) > xt(u2). 

Indeed, by the premises, for all t and x<1 we have the inequality 

1 1 2 2( ) (1 ( )) ( ) ( ) (1 ( )) ( )u t u t F x x u t u t F x x       , as the convex combination of different 

numbers (1 and F(x)) is strictly monotonic. The point x=1 forms the equilibrium of the system 

(1) under any control actions u(t). And so, it is unreachable for any finite t. Using the above 

lemma, we find that xt(u1) > xt(u2) under same initial conditions. 

Suppose that the control actions are subjected to the constraint 

   0    ,     ,u t t t   (3) 

where Δ ∈ [0; 1] means some constant. 

We believe that t0=0, x(t0)=x(0)=0, i.e., initially the mob is in the nonexcited state. If the 

efficiency criterion is defined as the fraction of active agents at a given moment T > 0, then the 

corresponding terminal control problem takes the form 

 ( )
( ) max,

(2), (3).

T
u

x u






  (4) 

Here is a series of results (Propositions 2-4) representing the analogs of the corresponding 

Propositions from [5]. 

Proposition 2. The solution of the problem (4) is given by u(t) = Δ, t ∈ [0; T]. 

Denote by ˆ ˆ( , ) min { 0 | ( ) }tx u t x u x     the first moment when the fraction of active agents 

achieves a required value x̂  (if the set ˆ{ 0 | ( ) }tt x u x   is empty, just specify ˆ( , )x u  = +∞). 

Within the current model, one can pose the following time-optimal problem: 

 ( )
ˆ( , ) min,

(2), (3).

u
x u







  (5) 

Proposition 3. The solution of the problem (5) is given by u(t) = Δ, t ∈ [0; τ]. 

By analogy with the discrete-time models [5], the problem (4) or (5) has the following 

practical interpretation. The Principal benefits most from introducing the maximum admissible 

number of provokers in the mob at the initial moment, doing nothing after that (e.g., instead of 

first decreasing and then again increasing the number of introduced provokers). This structure of 
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the optimal solution can be easily explained, as in the models (4) and (5) the Principal incurs no 

costs to introduce and/or keep the provokers. 

What are the properties of the reachability set D = 
( ) [0; ]

( )T

u t

x u
 

? Clearly, [0;1]D , since 

the right-hand side of the dynamic system (2) vanishes for x = 1. 

In the sense of potential applications, a major interest is attracted by the case of constant 

controls (u(t) = v, t ≥ 0). Here the Principal chooses the same fraction v   [0; ∆] of provokers at 

all moments. Let xT(∆) = xT(u(t) ≡ Δ), t ∈ [0; T], and denote by D0 = 
[0; ]

( ) [0;1]T

v

x v
 

  the 

reachability set under constant control actions. According to Proposition 1, ( )Tx v  represents a 

monotonic continuous mapping of [0; ∆] into [0; 1] such that (0) 0Tx  . This leads to the 

following. 

Proposition 4. D0 = [0; xT(∆)]. 

Consider models taking into account the Principal’s control costs. Given a fixed “price” 

λ ≥ 0 of one provoker per unit time, the Principal’s costs over a period τ ≥ 0 are defined by 

  
0

(      .)u t dtc u



     (6) 

Suppose that we know a pair of monotonic functions characterizing the Principal’s terminal 

payoff H(∙) from the fraction of active agents and his current payoff h(∙). Then the problem (4) 

can be “generalized” to 

 
0

( ( )) ( ( )) ( ) max,

(2), (3).

T

T T
u

H x u h x t dt c u


  




   (7) 

Under existing constraints on the Principal’s “total” costs C, the problem (7) acquires the 

form 

 
0

( ( )) ( ( )) max,

(2), ( ) .

T

T
u

T

H x u h x t dt

c u C


 






   (8) 

A possible modification of the problems (4), (5), (7), (8) is the one where the Principal 

achieves a required fraction x̂  of active agents by the moment T (the cost minimization 

problem): 

 

( ) min,

ˆ( ) ,

(2).

T
u

T

c u

x u x








  (9) 

The problems of the form (7)-(9) can be easily reduced to standard optimal control problems. 

Example 1. Consider the problem (9), where ( )F x x , x0 = 0 and the Principal’s costs 

defined by (6) with 0 1  . This yields the following optimal open-loop control problem with 

fixed bounds: 

 

[0, ]
0

(1 ),

ˆ(0) 0, ( ) ,

0 ,

( ) min .

T

u

x u x

x x T x

u

u t dt
 

 

 

  



  (10) 
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For the problem (10), construct the Hamilton-Pontryagin function  (1 )H u x u   . By the 

maximum principle, this function takes the maximum values in u . As H  is linear in u , its 

maximum is achieved at an end of the interval [0, ]  depending on the sign of the factor at u , 

i.e., 

    sign 1 1 1 .
2

u x


      (11) 

The fact that the Hamilton-Pontryagin function is linear in control actions actually follows 

from the same property of the right-hand side of the dynamic system (2) and the functional (6). 

In other words, we have the result below. 

Proposition 5. If the constraints in the optimal control problems (7)-(9) are linear in control 

actions, then the optimal open-loop control possesses the structure described by (11). That is, at 

each moment the control action takes either the maximum or the minimum admissible value. 

The Hamilton equations acquire the form 

 

(1 ),

.

H
x u x

H
u

x



 


  



  



  

The boundary conditions are imposed on the first equation only. For 0u  , its solution is a 

constant; for u   , the solution is 

    0

0( ) 1 1 ( ) .
t t

x t x t e
 

     

The last expression restricts the maximum number of provokers required for mob transfer 

from the zero state to x̂ : 
1 1

log .
ˆ1T x

 


 

And there exists the minimum time min

1 1
log ,

ˆ1
t

x

 

 during which control actions take the 

maximum value  , being 0 at the rest moment. Particularly, a solution of the problem (10) has 

the form 

 
min

min

,
,

0,

t t
u

t t T

 
 

 
  (12) 

when the Principal introduces the maximum number of provokers from the very beginning, 

maintaining it during the time mint . 

The structure of the optimal solution to this problem (a piecewise constant function taking the 

value of 0 or  ) possibly requires minimizing the number of control switchovers (discontinuity 

points). Such an additional constraint reflects situations when the Principal incurs extra costs to 

introduce or withdraw provokers. If this constraint appears in the problem, the best control 

actions in the optimal control set are either (12) or 
min

min

, [ , ],

0, .

t T t T
u

t T t

  
 

 
 

3. CONSTANT CONTROL 

In the class of the constant control actions, we obtain cτ(v) = λ v τ from formula (6). Under 

given functions F(∙), i.e., a known relationship xt(v), the problems (7)-(9) are reduced to standard 

scalar optimization problems. 

Example 2. Choose F(x) = x, T = 1, x0 = 0, H(x) = x, and h(x) = γ x, where γ ≥ 0 is a known 

constant. It follows from (2) that 

  
0

  1   – ex ( .)p 

t

t u yx dyu
 

  
 
   (13) 

For the constant control actions, xt(v) = 1 – vte . 
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The problem (7) becomes the scalar optimization problem 

 
[0; ]

1 maxv

v
e v

v v

 


 

 
    

 
 . (14) 

Next, the problem (8) becomes the scalar optimization problem 

 
[0; ]

1 maxv

v
e

v v

 

 

 
   

 
 . (15) 

And finally, the problem (9) acquires the form [0;1]
min,

ˆ1 .

v

v

v

e x







 

 Its solution is described by 

v = 
1

log
ˆ1 x

 
 
 

. 

4. EXCITATION OF WHOLE MOB 

Consider the “asymptote” of the problems as T → +∞. Similarly to the corresponding model 

in [5], suppose that (a) the function F(∙) has a unique inflection point and F(0) = 0, (b) the 

equation F(x) = x has a unique solution q > 0 on the interval (0; 1) so that 

(0; ) ( ) , ( ;1) ( )x q F x x x q F x x      . Several examples of the functions F(∙) satisfying these 

assumptions are provided in [5]. The Principal seeks to excite all agents with the minimum costs. 

By the above assumptions on F(∙), if for some moment τ we have x(τ) > q, then the trajectory 

xt(u) is nonincreasing and lim ( ) 1t
t

x u


  even under u(t) ≡ 0 t   . As mentioned in [5], this 

property of the mob admits the following interpretation. The domain of attraction of the zero 

equilibrium without control (without introduced provokers) is the half-interval [0; q). In other 

words, it takes the Principal only to excite more than the fraction q of the agents; subsequently, 

the mob itself surely converges to the unit equilibrium even without control. 

Denote by u
τ
 the solution of the problem 

 
: ( ) [0; ], ( )

0

( ) min
u u t x u q

u t dt




  
   (16) 

Calculate Qτ = 
0

( )u t dt





  and find τ
*
 = arg 

0
min
 

 Qτ. 

The solution to the problem (16) exists under the condition 

 
[0, ]

* ( )
max

1 ( )
 

x q

x F x

F x
  




  (17) 

For practical interpretations, we refer to [5]. 

Owing to the above assumptions on the properties of the distribution function, the optimal 

solution to the problem is characterized as follows. 

Proposition 6. If the condition (17) holds, then u
τ
(t) ≡ 0 for t > τ. 

Example 3. The paper [9] constructed the two-parameter function F(∙) describing in the best 

way the evolvement of active users in the Russian-language segments of online social networks 

LiveJournal, FaceBook and Twitter. The role of the parameters is player by a и b. This function 

has the form 

      ,

arctan( ( )) arctan( )
,

arctan( (1 )) arctan( )
  7;1  5 ,   0;1  .a b

a x b ab
F x a b

a b ab
 

 


 
  

Choose a = 13 that corresponds to Facebook and b = 0.4. In this case, q ≈ 0.375 and 
*  ≈ 0.169; the details can be found in [5]. 
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5. FEEDBACK CONTROL 

In the previous sections, we have considered the optimal open-loop control problem arising 

in mob excitation. An alternative approach is to use feedback control. Consider two possible 

statements having transparent practical interpretations. 

Within the first statement, the problem is to find a feedback control law ( ) :[0;1] [0;1]u x   

ensuring maximum mob excitation (in the sense of (4) or (5)) under certain constraints imposed 

on the system trajectory and/or control actions. 

By analogy with the expression (3), suppose that the control actions are bounded: 

  ( ) , 0;1 ,xu x     (19) 

and there exists an additional constraint on the system trajectory in the form 

 ( ) ,    0,tx t     (20) 

where δ > 0 is a known constant. The condition (20) means that, e.g., a very fast growth of the 

fraction of excited agents (increment per unit time) is detected by appropriate authorities banning 

further control. Hence, trying to control mob excitation, the Principal has to maximize the 

fraction of excited agents subject to the conditions (19) and (20). The corresponding problem 

possesses the simple solution 

 * ( )
( ) min ; max 0;

1 ( )

x F x
u x

F x

   
   

  
,  (21) 

owing to the properties of the dynamic system (2), see the lemma. The fraction in (21) results 

from making the right-hand side of (1) equal to the constant δ. Note that, under small values of δ, 

the nonnegative control action satisfying (20) may cease to exist. 

The second statement of feedback control relates to the so-called network immunization 

problem [4]; here the Principal seeks to reduce the fraction of active agents by introducing an 

appropriate number (or fraction) of immunizers–agents that always prefer passivity. 

Denote by w ∈ [0; 1] the fraction of immunizers. As shown in the paper [4], the fraction of 

active agents evolves according to the equation 

  (1 ) ( ) ;1  ., 0x w F x x x     (22) 

Let ( ) :[0;1] [0;1]w x   be a feedback control. If the Principal is interested in reducing the 

fraction of active agents, i.e., 

 ( ) 0, 0,x t t    (23) 

then the control actions must satisfy the inequality 

 ( ) 1
( )

x
w x

F x
   . (24) 

The quantity min
[0;1]

max 1
( )x

x

F x

 
   

 
 characterizes the bottom restrictions on the control 

actions at each moment when the system (22) is “controllable” in the sense of (23). 

6. CONCLUSION 

This paper has described the continuous-time problems of mob excitation control using 

introduction of provokers or immunizers. 

A promising line of future research is analysis of a differential game describing informational 

opposition of two control subjects (Principals) that choose in continuous time the fractions (or 

numbers) of introduced provokers u and immunizers w, respectively. The corresponding static 

problem [7] can be a “reference model” here. The controlled object is defined by the dynamic 

system [4, 10] (1 ) (1 2 ) ( )x u w u w uw F x x       . 

Another line of interesting investigations concerns the mob excitation problems with dynamic 

(open-loop and/or feedback) control, where the mob dynamics is modeled by the transfer 
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equation [7] of the form       , (1 ) , 0p x t u u F x x p x t
t x

 
       

. In this model, the mob 

state at each moment is described by a probability distribution function p(x, t), instead of the 

scalar fraction of active agents.  
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