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Abstract: Some formulations of the optimal control problem require the resulting controller to
be sparse; i.e., to contain zero elements in the gain matrix. On one hand, sparse feedback leads to
the drop of performance as compared to the optimal control; on the other hand, it confers useful
properties to the system. For instance, sparse controllers allow to design distributed systems with
decentralized feedback. Some sparse formulations require the gain matrix of the controller to have
a special sparse structure which is characterized by the presence of zero rows in the matrix. In
this paper, various approximations to the number of nonzero rows of a matrix are considered and
applied to sparse feedback design in optimal control problems for linear systems. Along with a
popular approach based on using the matrix `1-norm, more complex nonconvex surrogates are
proposed and discussed, those surrogates being minimized via special numerical procedures. The
efficiency of the approximations is compared via numerical experiments.

Keywords: sparse control, `1-optimization, linear systems, optimal control, linear matrix
inequalities

1. INTRODUCTION

Optimal control problems in linear theory may have a requirement imposed on the structure
of the controller along with the necessity of optimizing the objective function. One example
of such requirement would be sparsity of the controller, which is understood as having many
zero elements in its gain matrix; e.g., see [12–14,22]. Elementwise and block sparsity allows
to design distributed systems with decentralized control. This additional sparsity requirement
naturally leads to a drop in performance, which is explained by the fact that the set of
sparse controllers is contained in the feasible set for the corresponding classical formulation.
Nevertheless, in some formulations of control problems, a reasonable drop in performance
is allowed for the sake of having a sparse control. For instance, the objective function in
the standard LQR problem has the form of a quadratic functional, which is related to energy
consumption in the system; e.g. fuel consumption of an aircraft. On one hand, a sparse control
leads to worse (higher) values of the objective function, i.e., fuel consumption is increased;
on the other hand, it augments the system with various useful properties. For example,
decentralized control makes the system more reliable and fail-safe; decreasing the number
of active actuators allows to slow down an equipment deterioration, thereby increasing the
lifetime of the system.

In [15], a special kind of sparsity was introduced, which is different from a typical
elementwise sparsity. The authors considered a controller to be sparse if its gain matrix has
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many zero rows or columns. Such controllers facilitate ease of hardware implementation of
the control systems, such as a reduction of the number of actuators or sensors and the amount
of information transmitted via control channels. A direct minimization of the number of
nonzero rows or columns of a matrix is known to be NP-hard, since it involves combinatorial
search. As the dimensions of the problem increase, the direct approach becomes inapplicable
due to its exponential time complexity. In [15, 16], an approach was proposed which is
based on solving convex surrogate problem instead of the original nonconvex one. This
substitution is implemented using special matrix norms which are convex approximations
(also called surrogates) to the number of nonzero rows/columns of a matrix (nonconvex
matrix `0-quasinorms). This heuristic, however, does not guarantee an occurrence of zero
rows/columns in the gain matrix, and by all appearances strict results cannot be obtained due
to nonconvexity of the original problem. Nevertheless, the exploited heuristic is shown to be
efficient and the approach seems to work for numerous examples. Such non-strict approaches
require computer simulations for proving their efficiency, and in the current paper we put
emphasis on the numerical study.

Apart from convex surrogates, some papers [2–4, 13] suggest using nonconvex
approximations for more efficient detection of sparse solutions in case of vector and matrix
variables.

The main goal of this paper consists in comparing the efficiency of different
approximations to the matrix `0-quasinorm, which can be used for sparse feedback design
in optimal control problems. Also, a general scheme for gaining trade-off between optimality
and sparsity of the solution is proposed which allows to use various approximations in a
similar way.

The key aspects of this paper are the formulation of several surrogates for the matrix
`0-quasinorm, which can be used for promoting matrix row-sparsity, designing the scheme
of numerical study, and the analysis of the results of experiments. Both models of simple
systems and linearized models of real systems were chosen as test cases for conducting
the numerical experiment. Also, various software for numerical computing [5, 18, 19], and
algorithms for nonconvex optimization [3, 21] were used.

Numerical study is the central part of this paper due to the following reason. Although
the approach based on convex surrogates heuristic is said to be efficient, one cannot be
sure about getting zero rows in the gain matrix. Thus, different surrogates demonstrate
different efficiency for different problems; this paper aims to study the efficiency of various
approximations.

Our paper essentially exploits Linear Matrix Inequality (LMI, [1]) technique, which
allows to formulate many classical problems from control theory in the form of SemiDefinite
Programs (SDP, [20]).

2. SPARSE FEEDBACK DESIGN IN OPTIMAL CONTROL PROBLEMS

Consider the following control system:

ẋ = Ax+Bu, x(0) = x0, (2.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the control input,A ∈ Rn×n,B ∈ Rn×p, and
the pair (A,B) is assumed to be controllable.

If system (2.1) is not stable, a stabilizing control is to be found, which also has to minimize
an objective function along the system’s trajectories. Various formulations differ in the form
of the control input; in this paper we exploit a static state linear feedback form:

u = Kx, K ∈ Rp×n. (2.2)

From this point, we consider the LQR (Linear Control Regulation) problem, the approach
and the numerical experiment being applicable to other optimal control problems. In the LQR
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problem, the objective function has the form of the following quadratic functional:

J =

∞∫
0

(
x>Rx+ u>Su

)
dt, (2.3)

where R ∈ Rn×n and S ∈ Rp×p are positive–definite matrices.
It is worth emphasizing that minimizing functional (2.3) automatically leads to stabilizing

system (2.1). Indeed, if the system was unstable, integral (2.3) would be divergent; however,
since the pair (A,B) is controllable, there exists a controller, which makes the functional J
finitely valued.

The standard way of solving the LQR problem consists in finding a solution to the
associated algebraic Riccati equation; however, in this paper we adhere to another approach
(e.g., see [7]) based on the linear matrix inequality technique. In [7], the classical LQR
problem is reduced to the following SDP problem:

Problem 1:
Let Popt, Yopt be the solution of the SDP

trP −→ max s.t.(
AP + PA> +BY + Y >B> P Y >

∗ −R−1 0
∗ ∗ −S−1

)
4 0, (2.4)

then the controller (2.2) with gain matrix

Kopt = YoptP
−1
opt (2.5)

stabilizes system (2.1), the objective functional (2.3) being minimized, and the optimal value
of the functional is equal to

Jopt = x>0 P
−1
optx0. (2.6)

This approach involving LMIs can be very useful, for instance, for robust formulations
where the matrices of the system contain uncertainty. But what’s more important for the
current paper, it is the LMI-based approach that allows to solve the problem in sparse
formulations.

As it was mentioned, the sparse formulation that we consider, imposes an additional
requirement on the structure of the gain matrix; namely the intention is to have as many
zero rows in matrix K as possible. Clearly, due to the structural constraint on the matrix K,
the feasible set of controllers becomes smaller, so that a drop in performance of the sparse
controller is unavoidable, and we do not want it to be significant.

The problem of comparison of the two controllers with respect to a quadratic performance
index is not as straightforward as it may seem; e.g., see [8]. If one compares the values of
the functional J(P ) = x>P−1x corresponding to the two different stabilizing controllers K1

and K2 with the corresponding matrices P1 and P2, the sign of the inequality J(P1) ≶ J(P2)
may change depending on the initial condition x0. In this paper we compare sparse controllers
with the optimal ones, which, by construction, yield the optimal value of the functional J for
any initial condition x0. In other words, the sparse controller with matrix Psp will always lose
the optimal controller with matrix Popt in terms of the value of the quadratic functional J .
The magnitude of the loss (performance drop) for a given initial condition x0 is

Jsp
Jopt

=
x>0 P

−1
sp x0

x>0 P
−1
optx0

;
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this value, obviously, can change significantly for various x0.
There is a well-known approach [11] based on averaging the values of J over initial

conditions uniformly distributed on the unit n-dimensional sphere. It is not hard to show that
the mathematical expectation of J is equal to

E(x>0 P
−1x0) =

1

n
trP−1;

thus the magnitude of the sparse-to-optimal control loss “on the average” equals

Jsp
Jopt

=
trP−1sp

trP−1opt

. (2.7)

In this paper we adhere to the described approach based on “averaging”; i.e., we use
relation (2.7).

In [16], a procedure is proposed to design sparse controllers in optimal control problems,
in particular, in the LQR problem. The key stage of the procedure, which is responsible for
the detection of the sparse structure of the controller, consists in minimizing the 1∞-norm of
the gain matrix. This norm plays the role of a convex surrogate for the number of nonzero
rows of a matrix and is defined as follows:

‖X‖1∞ =
n∑

i=1

max
16j6p

|xij|, X ∈ Rn×p. (2.8)

The three-step procedure from [16], generalized to the case of arbitrary approximation to
the matrix `0-quasinorm, was used as a basis for the numerical study in this paper. The key
aspects of the procedure are given below.

Step 1 (optimal control design). The classical LQR problem is solved (Problem 1) and
the value trP−1opt is fixed. This value corresponds to the optimal value Jopt of the quadratic
functional J .

Step 2 (detection of sparse structure). Let α > 1 denote the maximum admissible loss
in the quadratic performance index that appears due to sparsity; i.e., the following condition
is imposed:

trP−1sp

trP−1opt

6 α, α > 1.

So, α is the coefficient of the allowed performance drop “on average” and it acts as the
parameter of the following SDP problem:

Problem 2:

‖Y ‖(sp) −→ min s.t. (2.4),(
X I
I P

)
< 0, and trX 6 α trP−1opt . (2.9)

Note that, similarly to Problem 1, the gain matrix K does not explicitly appear in the
constraints or in the objective function of the SDP. Thus, the variables are positive–definite
matrices P and X and an auxiliary matrix variable Y = KP ; the latter was introduced to
transform the constraints to the form of linear matrix inequalities.

The minimized function in Problem 2 is denoted by ‖·‖(sp) and it plays the role of an
approximation to the matrix `0-quasinorm. The 1∞-norm is one of such approximations and
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it allows to solve convex problem instead of the nonconvex one. There are more complex and
efficient surrogates, some of which are described in the next section.

Let the matrix Y0 be the solution of Problem 2 and assume it contains rows with all
elements being equal or close to zero. These rows are memorized and kept as strict zeros,
which automatically means that the gain matrix K0 = Y0P

−1 will also contain the same zero
rows. The latter fact follows from the rules of the matrix multiplication. Note that the value
of the objective function does not exceed αJopt “on average”.

Step 3 (optimization over sparse-structured controllers). The LQR problem is again
solved but with sparse structure of the controller being fixed as found at Step 2. In other
words, Problem 1 is solved with additional constraints on the matrix variable Y .

To sum up, the procedure described above gives a way to design a controller which may
have a sparse structure at the expense of a reasonable drop in performance; thus, a trade-off
between optimality and sparsity of the control can be achieved.

3. APPROXIMATIONS TO THE MATRIX `0-QUASINORM

So, the key step in the sparse feedback design procedure is the sparsity detection step. The
detection is performed via minimizing a surrogate for the number of nonzero rows of a matrix.

Below we consider four various approximations to the matrix `0-quasinorm, efficiency of
which is compared via numerical experiments. All approximations are described as functions
of ri, where ri qualifies the magnitude of the values of the ith row of the matrix Y . If a row
of the matrix is treated as a vector, then ri can be, e.g., one of the standard vector norms: l1-,
l2-, or l∞-norm. A matrix row is called a zero row if and only if all of its elements are zeros.
Also, if any of the mentioned norm approaches zero, then all of the row elements approach
zero. Numerical experiments show that the choice of the particular norm is not essential, so,
to be specific, we chose l∞-norm, the maximum of the absolute values of the components.
Thus, we define ri as follows:

ri = max
16j6n

|yij|, Y = ‖yij‖ ∈ Rp×n. (3.10)

3.1. 1∞-norm
The 1∞-norm (2.8) was introduced in [16]; in terms of ri (3.10) it can be written as:

‖Y ‖1∞ =

p∑
i=1

ri. (3.11)

This function is convex, therefore its minimization subject to constraints (2.4), (2.9) is an
SDP problem, which can be efficiently solved by means of convex optimization tools [20].

3.2. Weighted 1∞-norm
In [3], the authors developed the ideas of `1-optimization for promoting sparsity in case
of vector variables. They introduced a new iterative procedure which consists in solving a
sequence of weighted `1-optimization problems. At each iteration, the weight coefficients are
updated due to the solution received at the previous step. The weighted 1∞-norm is defined
as follows:

‖Y ‖w1∞
=

p∑
i=1

wiri. (3.12)

The iterative procedure from [3] can be schematically written down as follows:
Algorithm 1:
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16 A. BYKOV, P. SHCHERBAKOV

1. Initial estimate: l = 0, w
(0)
i = 1, i = 1, . . . , p.

2. The convex problem with currently accepted weights is solved:

r(l) = argmin
r

[
p∑

i=1

w
(l)
i ri

]
s.t. (2.4), (2.9).

3. The weights are updated:

w
(l+1)
i =

1

|r(l)i |+ ε
, ε > 0.

4. Quit the loop if the procedure converged or the maximum number of iterations is
exceeded. If both conditions are false, go back to step 2.

The authors of the original paper [3] confirmed via numerous examples that the new
approach involving the minimization of the weighted `1-norm performs much better than the
“standard” non-weighted approach. This can be explained by the fact that the sequence of
convex problems can better approximate the original nonconvex problem of minimizing the
matrix `0-quasinorm.

3.3. Nonconvex sparsity detector, NSD
In [2], a nonconvex sparsity-promoting surrogate was introduced:

‖Y ‖NSD =

p∑
i=1

ri
∏
j 6=i

rj
rj + 1

. (3.13)

The authors provide some motivation for this particular approximation and demonstrate its
efficiency as compared to the 1∞-norm.

The function (3.13) is shown to be a DC-function (Difference of Convex, see [6]) and for
its minimization, the Concave-Convex Procedure (abbr. CCCP, e.g., see [21]) is proposed.

Let the function (3.13) be represented as a DC-function: NSD(r) = U(r)− V (r). Then
the procedure for its minimization is given below:

Algorithm 2:

1. Initial estimate: l = 0, r
(0)
i = max

16j6n
|yij|, i = 1, . . . , p, where Yopt = ‖yij‖ is the

solution of Problem 1.
2. The following convex problem is solved:

r(l+1) = argmin
r

[
U(r)− r>∇V

(
r(l)
)]

s.t. (2.4), (2.9).

3. Quit the loop if the procedure converged or the maximum number of iterations is
exceeded. If both conditions are false, go back to step 2.

In [9], the results on the convergence of the CCCP procedure are presented; in the general
case, global convergence is not guaranteed, since the problem is not convex. However, for
many applications this procedure yields an appropriate solution.
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3.4. Nonconvex approximation log-sum
In [3, 4, 13], the function log-sum (see definition below) is shown to present a more precise
approximation to the `0-norm of a vector than convex approximations. Indeed, let us consider
the following scalar functions (see Fig. 3.1) which can be used as penalty functions for
nonzero values:

f0(x) = 1[x 6=0], f1(x) = |x|, flog,ε(x) = Cε log
(
1 +
|x|
ε

)
;

the factor Cε is chosen in a such way that the equality flog,ε(1) = 1 = f0(1) = f1(1) holds.

-1 0 1

x

0

1 f
0
(x)

f
1
(x)

f
log, ǫ

(x)

Fig. 3.1. Approximations to the `0-quasinorm

The derivative of the function flog,ε(x) in the positive vicinity of the origin grows
approximately like 1

ε
as ε −→ 0. This leads to a relatively big amount of penalty for small but

not exactly zero values. Moreover, note that flog,ε(x) −→ f0(x) as ε −→ 0. Unfortunately, as
ε tends to zero, the minimization of the function log-sum becomes difficult; for heuristic of
choosing ε see [3].

The function log-sum adapted for promoting matrix row-sparsity can be written as

‖Y ‖log-sum =

p∑
i=1

log (1 + ri) . (3.14)

Since the function (3.14) is concave, it cannot be minimized via convex optimization
framework. However, it can be treated as a special case of DC-function, so, it can be
minimized via concave-convex procedure (CCCP) just like the NSD function.

4. RESULTS OF NUMERICAL EXPERIMENTS

In the previous section, several well-known and relatively new approximations to the number
of nonzero rows of a matrix were considered. Among these surrogates are the 1∞-norm
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exploited in [16], and the NSD function introduced in [2]. Both approximations, however,
have not yet received enough approval from numerical experiments; therefore, they were
chosen as contestants for the experiment in this paper. Also, two other approximations (the
weighted 1∞-norm and the function log-sum), which were earlier applied in the case of
vector variables, were adapted for promoting matrix row-sparsity. All these surrogates were
used at Step 2 of the three-step procedure to design sparse controllers in the numerical
experiment.

All the examples described below were solved with MATLAB using the cvx framework
[5] for solving convex optimization problems and the SDPT3 solver [19]. It was checked that
using other solvers such as SeDuMi [18] did not give any specific benefits or drawbacks.

The main goal of the experiment was to compare the efficiency of approximations (3.11),
(3.12), (3.13), (3.14) used for getting zero rows in the matrix Y0 at Step 2 of the three-
step procedure, which allows to design sparse controllers in the LQR problem. During the
experiments, both models of simple systems and linearized models of real systems were
considered. The latter were taken from the COMPleib, a popular collection of test problems
from control system design and related fields.

The general scheme of the experiment is as follows:
Algorithm 3 (Scheme of experiment):

1. The classical LQR problem is solved (Problem 1) and the value trP−1opt is fixed. This
value corresponds to the optimal value Jopt of the quadratic functional J .

2. The initial value of the maximum admissible loss in the quadratic performance index is
chosen: αmin = 1 + ε, ε > 0.

3. The magnitude of α is increased inside the loop until the most sparse control can be
acquired. For every value of α the following steps are executed:
(a) The detection of zero rows is performed (Problem 2) for a given α̂. The zero

structure obtained from the solution is fixed; the number of zero rows denoted by
Nnz is memorized.

(b) The LQR problem (Problem 1) is solved with the sparse structure of the controller
being fixed as found at the previous step. The performance drop is determined by
the relation αsp =

trP−1
sp

trP−1
opt

.

Hence, every iteration of the loop gives us two points at the plane with coordinates
the number of nonzero rows and the performance drop. These points are (Nnz, α̂) and
(Nnz, αsp), where α̂ is the value of the maximum admissible loss which leads to the
detection of zero rows, and αsp is the actual loss in performance, which corresponds
to the detected sparse structure of the controller. It is worth noting that αsp might be
drastically less than α̂.

4. The brute-force enumeration of all possible combinations of zero rows in the gain matrix
is performed and for every combination and the corresponding sparse structure the
LQR problem (Problem 1) is solved. Note that such a brute-force search is performed
exceptionally within the experimental setup for illustration purposes only; it is not
needed in the respective theorems. For the combination with index k ∈ [1; 2p − 2] the

performance drop is determined by the relation αbf,k =
trP−1

bf,k

trP−1
opt

.

Note that we consider 2p − 2 combinations of zero rows instead of 2p, since two cases
are excluded. The first one corresponds to the absence of zero rows, i.e., to the classical
formulation without the sparsity requirement. The second obvious case corresponds to the
situation where all rows of the gain matrix are zero rows.

The points (Nnz, αsp) obtained as an output of the Algorithm 3 are related to the Pareto
optimality, a well-known concept from the theory of multiobjective optimization. Namely, a
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point is said to be Pareto-optimal if none of the criteria can be improved without worsening
the others. Also, note that the values of αsp might not be optimal for a given number of
nonzero rows Nnz, since we solve the surrogate for the original nonconvex problem and the
global convergence is not guaranteed. Nevertheless, varying the importance of one or another
criterion we can gain a necessary trade-off between optimality and sparsity.

4.1. Examples from COMPleib
The experiment was conducted in accordance with the described scheme for several problems
from the COMPleib collection: “AC1”, “AC9”, “AC12”, “HE3”, “HE4” (linearized models of
aircrafts and helicopters). These examples are of interest in terms of the dimension of the
control input. The behaviour of various approximations to the matrix l0-quasinorm for all five
models is quite similar, so it is reasonable to present the results for just one example – model
“HE4”.

This eight-order model represents a twin-engine, multi-purpose military helicopter. Let
us recall that the behaviour of the system is described by equations (2.1). The values of
the entries of the matrices A and B are not presented for space considerations; they can
be found in the COMPleib documentation. The weight matrices R and S in the quadratic
functional (2.3) were set to identity.

The results of the experiment conducted in accordance with Algorithm 3 are presented
in Figs. 4.2, 4.3, and 4.4.
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Fig. 4.2. “HE4”. The detection of zero rows for various α̂
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Figure 4.2 shows the points (Nnz, α̂) obtained for the functions (3.11), (3.12), (3.13),
(3.14) in accordance with Algorithm 3. This plot demonstrates how big one should set the
admissible loss in performance in order to get zero rows in the gain matrix of the controller.
One can see that using approximations (3.12), (3.13), (3.14) leads to the detection of sparse
structure for smaller values of α̂. It turned out that for any surrogate except for the 1∞-norm,
in order to detect two zero rows out of the total four, we needed to set α̂ slightly less than
1.005, which corresponds to the performance drop of just 0.5%.

The transition from one zero row to two zero rows happens at close values of α̂, therefore
using an insufficiently dense grid of α̂ values can mislead into believing that both zero rows
appear simultaneously. Such simultaneous appearances of two zero rows were not noticed
during the experiment, and they obviously should not happen due to the following reason.
Every next zero row of the gain matrix makes the feasible set of controllers smaller, so the
optimal value of the quadratic functional for the controller with n+ 1 zero rows is a priori
worse than the corresponding value for the controller with n zero rows.
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Fig. 4.3. “HE4”. The actual loss in performance index

Figure 4.3 shows the points (Nnz, αsp) obtained from the Algorithm 3, which correspond
to the actual sparse-to-optimal loss in performance. For the 1∞-norm we had α̂� αsp, while
using the other surrogates yields a sparse structure for α̂ close to αsp, which is surely an
advantage of these approximations. Indeed, if one had to set α̂� αsp in order to get a
sparse control, the interpretation of α̂ as a maximum admissible performance loss would
be incorrect. For instance, using the 1∞-norm in example “HE4”, in order to detect sparse
control which yields 0.5% of the actual performance drop, we had to allow for a maximum
admissible performance loss of 15− 20% during the detection step. Moreover, using the
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1∞-norm in some examples can lead to a large difference between α̂ and αsp. Using other
approximations usually allows to detect a sparse structure for the values α̂ which are close to
the corresponding values of αsp; i.e., α̂ is a more accurate estimate of αsp.
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Fig. 4.4. “HE4”. The actual loss in performance index. All possible combinations of zero rows

Figure 4.3 depicts the points marked as black crosses which were obtained at step 4 of the
Algorithm 3 during the brute-force enumeration. It turned out that for our example the three-
step procedure yielded the optimal sparse structures for every number of zero rows. Figure 4.3
is just a part of the whole picture presented in Fig. 4.4, where all possible combinations
of zero rows of the gain matrix can be seen. As we can see, a poor choice of the sparse
structure can lead to a dramatic loss in the performance index. It is important to understand
that the occurrence of large values of performance drop in Fig. 4.4 is explained by the specific
properties of the system itself rather than by sparsity detection methods; some systems just
do not tolerate zeroing out specific control inputs. This fact also leads to an interesting “side-
effect” which consists in the ability to filter out sparse controllers with “poor” structure a
priori by choosing appropriate values for α̂.

Similar results were obtained for other examples from COMPleib such as “AC1”, “AC9”,
“AC12”, “HE3”. Therefore, all the observations and conclusions made for model “HE4” are
also valid for all listed examples.

4.2. Mass Spring System
Consider the system which consists of N masses mis connected via springs with stiffness
coefficients kis; the masses can slide frictionless along the line (see Fig. 4.5). Let us denote
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the displacement of the ith mass from its reference position as pi and let the state variables
be x1 = [p1 . . . pN ]

> and x2 = ẋ1.

Fig. 4.5. Model “Mass Spring System”

Similarly to the previous section, the behaviour of the system is described by the
equation (2.1). In this example we used identity weight matrices R and S in the quadratic
functional (2.3).
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Fig. 4.6. “MS”. The detection of zero rows for various α̂

For the sake of simplicity we considered the system with the following parameters:

m1 = · · · = mN = 1, k1 = · · · = kN = 1,

Copyright c© 2018 ASSA. Adv Syst Sci Appl (2018)



SURROGATES FOR THE MATRIX `0-QUASINORM 23

so that the matrices of system (2.1) has the form

A =

[
O I
T O

]
, B =

[
O
I

]
,

where T ∈ RN×N is a tridiagonal Toeplitz matrix with −2 on its main diagonal and 1 on its
first super- and sub-diagonal, I ∈ RN×N is the identity matrix, and O ∈ RN×N is the zero
matrix.

This model is useful, since it allows to choose arbitrary values for the number of masses
N , i.e., to vary the dimension of the problem. The experiment was conducted for several
values of N , the observed results being quite similar. We present the results for N = 10,
since even for N = 10 the number of all possible combinations of zero rows is equal to
210 − 2 = 1022, thus, the brute-force approach is still possible yet challenging.
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Fig. 4.7. “MS”. The actual loss in performance index

The results of the experiment for this example are presented in Figs. 4.6 and 4.7. The
figures show that use of the 1∞-norm in this problem did not lead to the successful detection
of a sparse structure even for large values of α̂. This reminds us of the example “HE4” from
the previous section, where we noticed that using the 1∞-norm makes α̂ a poor estimate of
αsp. This observation is valid for all values of N tested during the experiment. It is hard to
explain such an inefficiency of the 1∞-norm. In this particular example one of the possible
reasons might be a homogeneous internal structure of the system, which probably makes the
choice of the control inputs to be zeroed out a challenging task.
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Although the weighted 1∞-norm succeeded in yielding sparse controllers, it is less
efficient than the nonconvex approximations (3.13) and (3.14). Nevertheless, Algorithm 1 for
minimizing the weighted 1∞-norm is quite straightforward in implementation and allows to
achieve better results than the standard minimization of the 1∞-norm. There is an interesting
detail about the process of the detection of zero rows. This process is sequential, i.e., the
number of zero rows grows step-wise or one by one. If the values in the row approach zero,
say become less than 10−10, then, according to the algorithm, the weight for this row becomes
very large, since it is inversely proportional to the maximum among the absolute values of
the elements of this row. For a row with the weight 1010 it is hardly possible to gain nonzero
values. Thus, if at any iteration some row becomes zero, it will stay zero till the end of the
algorithm.

Implementation of the algorithm to minimize approximations (3.13), (3.14) (CCCP)
requires calculating a gradient of the corresponding functions, its iterative nature being
similar to Algorithm 1. In most cases, the nonconvex surrogate NSD performs as good as
the log-sum approximations, and sometimes NSD happens to be better. Figure 4.7 shows that
using functions (3.13), (3.14) yielded sparse controllers which are close or equal to optimal
sparse controllers. In terms of optimality, among sparse controllers with the fixed number
of zero rows the weighted 1∞-norm (3.12) is less efficient than nonconvex surrogates. This
detail is important due to the fact that global convergence is not guaranteed.

On the ground of the results of the numerical experiments described above we arrived at
the following conclusions:

• Using the 1∞-norm can lead to situations where the actual sparse-to-optimal
performance drop αsp is significantly smaller than the maximum admissible loss in
performance α̂. Other surrogates usually do not suffer from this drawback.
• Using approximations to the matrix `0-quasinorm usually yields a sparse controller

which is optimal among all controllers with the same number of zero rows.
• In some problems (e.g., see the example from section 4.2) the 1∞-norm does not

succeed in the detection of sparse structure even for large values of α̂.
• The NSD function appears to be effective similarly to the nonconvex surrogate log-sum,

and in some cases the NSD happens to perform better.

5. CONCLUSION

In this paper we considered various approximations to the matrix `0-quasinorm, which can be
applied to sparse feedback design in optimal control problems. The results of the numerical
experiments show that to some extent all the surrogates analyzed can be applied to the
detection of zero rows of the gain matrix, but nonconvex surrogates perform better.

Future efforts to be made in this area include the analysis of examples where one or
another approximation to the matrix `0-quasinorm happens to be inefficient, and studying
the alternative numerical procedures which can be applied to sparse feedback design, e.g.,
ADMM, alternating direction method of multipliers.
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