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Visual odometry approaches to autonomous navigation
for multicopter model in virtual indoor environment
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Abstract: Using simulators and virtual environments can simplify the development and
testing of various control, behavior and navigation scenarios significantly. In this article we
describe our experience using the ROS environment and the Gazebo simulator to develop
an autonomous multicopter UAV that can navigate an unknown building and locate an
exit using computer vision techniques.
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1. INTRODUCTION

As more powerful embedded computers appear, along with smaller cameras,
autonomous indoor navigation for mobile robots becomes a sufficiently interesting and
tractable problem, inciting new research [8, 13].

Since global positioning signal is usually unavailable indoors, mobile robots face hard
problems of determining their position in reference to some external beacons, route
planning and actuating movement. The essential difficulty is not navigation per se, but
locating beacons using available sensors. Autonomous mobile robots may face additional
challenges in dynamic environments.

Today’s technology allows for relatively easy development of autonomous mobile
robots that can navigate using only onboard sensors [1, 9]. However, there are no
universal algorithms for navigation in unknown scenes with dynamic obstacles.

Simulation software exists to facilitate the development and lower the entry threshold
of knowledge (e.g. DIY robotics). Well-designed simulators (see Gazebo [11]) make
rapid testing possible, as well as robot model building and their deployment in realistic
scenarios.

In this article we share our experience if solving a problem of autonomous navigation
in virtual environment using widespread visual odometry methods. We proceed with
the problem and scenario description, which is considered as a test ground for two
different approaches. We discuss strong points and limitations of the methods, as well
as evaluation of their applicability and overall difficulties of this type of research.
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2. PROBLEM STATEMENT

As an example of a navigation problem, we chose the following mission: a multicopter
of a specified model must autonomously locate a window in an unknown building and
leave via this window, without colliding with obstacles or using any kind of external
positioning system. Onboard sensors include IMU (accelerometers and gyroscopes) and
computer vision sensors (LiDAR and video cameras).

Building in question is an enclosed virtual hangar with one open window (see fig. 2.1).
The hangar has a rectangular plan. Texture, size and color of walls may vary. Obstacles
are represented by cylindrical pillars of varying height, diameter and color. Pillars
are static, but their position is random. They may also be combined to form more
complicated structures. The window is rectangular, although its position and dimensions
are not known.

As the mathematical models of sensors and whole UAVs are usually available, we shall
not pay too much attention to the hardware. For our research we chose a quadrotor
scheme (fig. 2.2) as the most widespread and small enough (less than 0.5 m in dia) to
operate indoors. A multitude of virtual sensors can be combined and installed onboard.

Virtual multicopter movement is controlled by feeding an embedded controller the
reference values of linear and angular velocity. The make of embedded controller is
fixed, thus we implement the autonomous movement with higher-level PID controllers
that have to be tuned separately.

Fig. 2.1. Top view of the virtual hangar

Fig. 2.2. Multicopter model
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3. PROPOSED SOLUTION

3.1. Technology
Simulation is run on Ubuntu 16.04 OS with ROS Kinetic installed. ROS (Robot

Operating System) is a framework for robot programming. It is based on graph
architecture, where data processing is performed in the nodes that can receive and
transmit messages to other nodes. There are many useful packages for ROS, which can
also be written from scratch using standard interface. C++ and Python are supported.
We should mention separately the MAVROS package that provides the data exchange
interface between ROS and autopilot firmware using MAVLink (Micro Air Vehicle Link)
protocol, which is designed for UAV communication.

As a simulator we chose the Gazebo software due to the availability of necessary UAV
and sensor models, as well as ROS integration. Additionally, we use OpenCV library
for image processing and DLib library for numerical optimization.

3.2. Flight strategy
High-level strategy for a chosen UAV model is described as a finite state machine and

contains the following steps (see fig. 3.3a).

1. Climb to a given altitude.
2. Survey the area. On this step the multicopter rotates (up to 360 degrees). Two

tasks are accomplished – searching for window and building a local obstacle map.
3. If a window is found, multicopter changes heading to face the window, and next step

is performed; otherwise, multicopter flies forward in the direction chosen according
to the algorithm and surveys again (step 2).

4. Head to the window avoiding obstacles and exit the building.

Local obstacles are mapped using frontal laser LiDAR (see fig. 3.3b). For each heading
we save the distance to the nearest obstacle and add a safety margin which allows to
avoid collisions. A new direction of movement is chosen as the clearest one and closest
to the course set.

On a lower level, we must control and stabilize the UAV model by flight altitude, yaw
angle and linear velocity.

(a) Flowchart of states change (b) Obstacles are grey, safety margins are pink

Fig. 3.3. Flight strategy and local obstacles map
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3.3. Angle stabilization
Orientation estimate obtained via MEMS gyroscopes can accumulate error due to

“zero drift” problem. Algorithms exist for fusing different sensors (accelerometers,
gyroscopes and magnetometers) to refine estimates. For example, Madgwick AHRS [12]
algorithm or extended Kalman filter [14].

We should note that the model firmware used IMU readings to interpret the control
signals. In case of yaw angle error this feature did not allow to control the UAV correctly
and had to be accounted for while specifying control signal. Since in case of simulation
the magnetometer readings were relatively accurate, they were used to rectify the yaw
estimate.

3.4. Altitude stabilization
It is reasonable to use a downward-facing range-finder (altimeter) to stabilize altitude.

An ultrasound range-finder can be used, but a more narrow-bear laser range-finder is
preferable. Additionally, orientation of the aircraft must be accounted for.

On the basis of this estimate, it is relatively simple to tune the coefficients for a
PID controller which can adequately stabilize the reference altitude (see fig. 3.4). Here
and below, we denote: Target – reference value; Real – ground truth, obtained from
simulator; PID – sensor estimate, fed to the PID controller.

3.5. Velocity stabilization
In GPS-denied indoor spaces we need to use other information to obtain current

velocity estimate. In principle, IMU can be used, but due to large errors it needs to be
amended by other means. Visual odometry is a promising approach [3]. A sequence of
images captured by camera can be a main or auxiliary source of position information.
Depending on number of cameras and their configuration, various methods can be
used. We’ll consider two approaches, mono and stereo visual odometry, that necessitate
installing one or two calibrated cameras respectively.

Fig. 3.4. Flight altitude stabilization by PID
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Fig. 3.5. Perspective projection camera model

3.6. Camera model
Visual odometry operates on a basis of a camera model. Often this is a relatively

simple perspective projection model (see fig. 3.5), represented by a matrix (3.1) of
intrinsic parameters (focal length and principal point). In more complicated cases,
distortion transformations are also accounted for.

C =

∣∣∣∣∣∣
fx 0 cx

0 fy cy

0 0 1

∣∣∣∣∣∣ (3.1)

Usually the intrinsic parameters are determined by camera calibration. For a virtual
camera we chose image center as the principal point (cx, cy) and obtain focal length
f = fx = fy from equation (3.2), knowing resolution s and field of view (FoV) angle α.

α = 2 · arctan s

2 · f (3.2)

Equation (3.3) gives us the relation of point (x, y, z) in 3D scene and its projection
(u, v) on image plane up to a scale coefficient w. This is a composition of rotation matrix
R and translation vector T .

w ·

∣∣∣∣∣∣
u
v
1

∣∣∣∣∣∣ = C · |R T | ·

∣∣∣∣∣∣∣∣
x
y
z
1

∣∣∣∣∣∣∣∣ (3.3)

3.7. Monocular visual odometry
Consider a case of one camera, laser altimeter and 6-axis IMU. If a camera is

downward-facing, then we can assume that most of the observed feature points belong
to one plane. This is a reasonable assumption if the flight altitude is low, and it was
almost always valid in our simulation.

Knowing altitude h and camera orientation quaternion QIMU , we can compute floor
plane equation a · x+ b · y + c · z + d = 0 coefficients, as indicated in (3.4). First three
coefficients are obtained by rotation operation ◦ a unit vector pointing along an axis Z.

(a, b, c) = Q−1
IMU ◦ (0, 0, 1); d = −h · c (3.4)
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(a) Keypoints optical flow with homo-
graphic filtering between two consequent
images of floor; matched points in green,

filtered points in red (b) Keypoints flow projection on the floor plane

Fig. 3.6. Monocular odometry approach to velocity estimation

Taking coordinates (u, v) of floor image feature points and substituting (3.5) in (3.6),
we reconstruct their position (x, y, z) in camera frame. Since frame used in aircraft
firmware does not match the camera frame, some axes and signs are inverted in
equations for x and y.

û = u− cx

fx

; v̂ = v − cy

fy

; (3.5)

z = d

a · û+ b · v̂ + c
; x = −z · v̂; y = −z · û (3.6)

As a result, linear velocity estimate is carried out using feature keypoints
position (FAST [5], good features to track [7]) from to consequent measurements.
Correspondence between feature points can be found, for example, by optical flow or by
comparing descriptors [4]. We used a well-established Lucas-Kanade algorithm [2], due
to its modest computational requirements and adequate performance in case of small
movements. The implementation of this algorithm is available in OpenCV library.

It is useful to apply additional filters to reject outliers: mean velocity, direction, etc.
An assumption of all points belonging to one plane allows us to successfully use the
filter based on homography matrix (see fig. 3.6a), obtained on RANSAC [10] method.

This approach is schematically depicted on fig. 3.6b. In this case, multicopter speed is
towards negative direction of axis Y . Thus, projections of feature points are moving in
the opposite direction. Red line is normal distance to the floor, blue line is its estimate
by altimeter and IMU readings, magenta plane is the observed floor plane, cyan markers
are feature points and their movement.

In general, monocular approach allows us to estimate velocity while flying at low
altitude (less than 1 m), and is computationally inexpensive. Flying higher leads to
poor performance. This is due to two factors:

1. Aircraft rotation at higher altitude leads to more displacement for optical flow to
handle, which leads to more errors and outliers.

2. Flying higher increases the probability of obstacles in view field, which invalidates
the assumption of all points belonging to the floor plane.

Here the task of odometry is not fully solved. Only velocity is estimated, and then
stabilized by a suitably tuned PID controller, without trajectory construction.
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Fig. 3.7. Velocity stabilization via monocular odometry approach

Therefore, the accuracy of this method makes it possible to successfully use it. Speed
estimates are adequate, as can be seen on fig. 3.7. Stabilization time is acceptable,
although overshooting is present.

3.8. Stereo visual odometry
Stereo visual odometry is an alternative approach to estimating velocity. In this work

we used a stereoscopic method based on reprojection error minimization [6]. It consists
of several steps:

1. For each feature point P 3D need to find correspondence between its projections
on current left and right frames of a stereo camera (pl

t, p
r
t ) and on one of the

previous frames (pl
t−1). This can be seen in fig. 3.8. As in monocular case, we use

Lucas-Kanade optical flow.
2. Using the established correspondence between the projections of all feature points

on the left (ul, vl) and right (ur, vr) frames of a stereo camera with base b, the
triangulation problem (3.7) is solved to restore their position (x, y, z) in 3D space
(see fig. 3.9).

(x, y, z) = b

ul − ur

· (ul − cx, vl − cy, f) (3.7)

3. Knowing current position on each feature point p3D
i,t in 3D space, and its projection

pl
i,t−1 at a previous time step, linear displacement T and rotation R are estimated

by minimizing (3.8) reprojection error.

argmin
R,T

∑
i

‖pl
i,t−1 − Ĉ(R · p3D

i,t + T )‖ (3.8)

Equation (3.8) contains a projection operator Ĉ that maps a point from 3D space
to the image plane according (3.3). We used the euclidian distance ‖·‖ as a norm.

This approach is more versatile, and does not demand additional hardware apart from
two properly fixed cameras (downward or forward facing). The main limitation is the
necessity of multiple observed feature points. Their allowed distance depends on stereo
camera base.
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Fig. 3.8. Schematic representation of 3D point projection on stereo camera matrix during movement.
Cl

t, Cr
t – left and right cameras at time t. Cl

t−1, Cr
t−1 – left and right cameras at time t− 1

Fig. 3.9. Triangulating P for a stereo camera with base b

Stereo visual odometry approach is also more computationally expensive – for the
same video parameters (648x486, 36fps) processing was 2-3 times longer. In our case,
monocular odometry allowed for real time computation, while stereo odometry had to
skip a half of available frames. It is possible, however, to decrease the precision in order
to speed up the computations.

In the examples considered, forward facing camera did not always perform well due
to lack of texture on pillars which yielded few feature points. Downward facing camera
was more stable, although there was a minimum necessary altitude that allowed both
cameras to see the same objects.
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Fig. 3.10. Velocity stabilization via stereo odometry approach

Fig. 3.11. Errors of calculated velocities for monocular and stereo approaches, error = |PID −Real|

Figure 3.10 shows the velocity stabilized with tuned PID controllers via the estimate
obtained by this approach. Velocity estimation is somewhat better than in monocular
case – the plots of Real and PID nearly match (see fig. 3.11).

4. SEARCH FOR WINDOW

To detect a window, we used color segmentation. Assuming that the background
visible through the window was a different color than the rest of the scene, we needed to
find a suitably colored shape (see fig. 4.12a). Furthermore, shape filtering, e.g. rectangle
detection (see fig. 4.12b), can be used.

At a last stage, when the aircraft approaches a window, it can become disoriented as
number of feature points decreases or they disappear entirely. In this case, we solve a
ballistics problem – aim for the window and fix a exit speed, disabling regular velocity
controllers.
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(a) Color segmentation and threshold binarization (b) Specifically-colored rectangle searching

Fig. 4.12. Searching for window

(a) Simple (b) Difficult

Fig. 4.13. Examples of the scenes

5. SIMULATION RESULTS

As a result of several simulation trials, we established that the described approach
solves a problem of exiting the building through the window. Two scenes of different
layouts were explored.

Simple scene dimensions are 40x50x10 m (see fig.4.13a). Obstacles are represented by
cylindrical pillars of different radii. Aircraft could detect the window directly from the
starting point and approached it while avoiding the obstacles.

Difficult scene dimensions are 50x90x15 m, obstacles are simple pillars and composite
objects of several different-sized cylinders, imitating trees. (see fig. 2.1, 4.13b). In
this case, obstacles blocked the window completely, thus search strategy had to be
activated. The parameters chosen resulted in a fairly conservative behavior – there was
no collisions, but search required a sufficiently long time.

Thus, a relatively simple search algorithm, that didn’t map the scene or localize of
the aircraft, could accomplish the task of exiting the building.

6. TECHNICAL DIFFICULTIES

We encountered some complications while using the Gazebo simulator, which should
be accounted for. Notably, high computational requirements, which resulted in unstable
work. Sometimes, a kind of “numerical wind” was apparent, a seemingly random
perturbations that forced the aircraft to crash.
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The effect could be reproduced by running both client and server parts of the simulator
on the same medium-powered computer. For all our experiments we used an Intel Core
i7-4510U CPU @ 2.00GHz, 8GB RAM PC. Additional disturbances were created by
other applications running in the background.

Practically, Gazebo is not the most comfortable software to use in case of multiple
test runs. Each run required restarting the whole virtual environment and took a lot
of time, which combined with the “numerical wind” made our work more difficult –
especially the tuning of PID controllers.

We encountered various other difficulties, including the necessity to convert between
every coordinate frame involved (world, aircraft, sensor). This, however, is anticipated
by MAVLink protocol which offers the possibility of specifying control in several
coordinate frames (NED, ENU, etc.)

7. RESULTS

Numeric simulation using the ROS framework, the Gazebo simulator and the rest of
the corresponding ecosystem allowed us to test the applicability of the chosen algorithms
in specified conditions. Use of this class of simulators and frameworks can be of much
help while developing real hardware and software platforms for UAVs.
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